BONE OR SOFT TISSUE HEALING AND FUSION ENHANCEMENT PRODUCTS

Policy Number: SURGERY 056.18 T2

Effective Date: April 1, 2018

This Clinical Policy provides assistance in interpreting Oxford benefit plans. Unless otherwise stated, Oxford policies do not apply to Medicare Advantage members. Oxford reserves the right, in its sole discretion, to modify its policies as necessary. This Clinical Policy is provided for informational purposes. It does not constitute medical advice. The term Oxford includes Oxford Health Plans, LLC and all of its subsidiaries as appropriate for these policies.

When deciding coverage, the member specific benefit plan document must be referenced. The terms of the member specific benefit plan document [e.g., Certificate of Coverage (COC), Schedule of Benefits (SOB), and/or Summary Plan Description (SPD)] may differ greatly from the standard benefit plan upon which this Clinical Policy is based. In the event of a conflict, the member specific benefit plan document supersedes this Clinical Policy. All reviewers must first identify member eligibility, any federal or state regulatory requirements, and the member specific benefit plan coverage prior to use of this Clinical Policy. Other Policies may apply.

UnitedHealthcare may also use tools developed by third parties, such as the MCG™ Care Guidelines, to assist us in administering health benefits. The MCG™ Care Guidelines are intended to be used in connection with the independent professional medical judgment of a qualified health care provider and do not constitute the practice of medicine or medical advice.

CONDITIONS OF COVERAGE

<table>
<thead>
<tr>
<th>Applicable Lines of Business/ Products</th>
<th>This policy applies to Oxford Commercial plan membership.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benefit Type</td>
<td>General benefits package</td>
</tr>
<tr>
<td>Referral Required (Does not apply to non-gatekeeper products)</td>
<td>No</td>
</tr>
<tr>
<td>Authorization Required (Precertification always required for inpatient admission)</td>
<td>Yes</td>
</tr>
<tr>
<td>Pre-certification with Medical Director Review Required</td>
<td>Yes¹</td>
</tr>
<tr>
<td>Applicable Site(s) of Service (If site of service is not listed, Medical Director review is required)</td>
<td>Outpatient, Inpatient</td>
</tr>
</tbody>
</table>

¹Review by a Medical Director or their designee is required - EXCEPT for CPT codes 20930 and 20931.
BENEFIT CONSIDERATIONS

When reviewing for coverage of a humanitarian use device (HUD), the coverage determination on an HUD will be made according to the hierarchy of evidence applied towards the evaluation of any technology, in the same way the evaluation would be applied to a service or technology that is FDA approved without a Humanitarian Device Exemption.

Essential Health Benefits for Individual and Small Group
For plan years beginning on or after January 1, 2014, the Affordable Care Act of 2010 (ACA) requires fully insured non-grandfathered individual and small group plans (inside and outside of Exchanges) to provide coverage for ten categories of Essential Health Benefits (“EHBs”). Large group plans (both self-funded and fully insured), and small group ASO plans, are not subject to the requirement to offer coverage for EHBs. However, if such plans choose to provide coverage for benefits which are deemed EHBs, the ACA requires all dollar limits on those benefits to be removed on all Grandfathered and Non-Grandfathered plans. The determination of which benefits constitute EHBs is made on a state by state basis. As such, when using this policy, it is important to refer to the member specific benefit plan document to determine benefit coverage.

COVERAGE RATIONALE

Bone graft materials can be categorized as follows:
- Autografts
- Allografts including (cadaver bone graft)
- Amniotic Tissue Membrane
- Demineralized Bone Matrix (DBM)
- Bone Morphogenetic Proteins (BMP)
- Ceramic-Based Products
- Cell-based products
- Platelet-Rich Plasma

Autografts
Autografts are proven and/or medically necessary for bone fusion enhancement.
Autografts harvest bone for grafting from the person undergoing surgery. The harvested bone is typically retrieved from the patient’s own tibia, fibula or iliac crest and then placed at the surgery site.

Allografts
Demineralized Bone Matrix (DBM) is a type of Allograft and is proven and/or medically necessary for bone fusion enhancement.
DBM is human bone processed with hydrochloric acid to remove mineral content.

Allografts are proven and/or medically necessary for bone fusion enhancement.
Allografts harvest bone for grafting from a person other than the surgical candidate. Cadaver bone is one type of Allograft.

Amniotic Tissue Membrane
The use of amniotic membrane products in the treatment of spine disease or in spine surgery is unproven and/or not medically necessary due to insufficient clinical evidence of safety and/or efficacy in published peer-reviewed medical literature.
Evidence is limited to animal studies only. No current clinical trials with humans were identified. There is limited evidence that Amniotic Tissue Membrane improves health outcomes when used in lumbar spine fusion. Long term safety and efficacy have not been established.

Bone Morphogenetic Proteins (BMP)

Bone Morphogenetic Protein-2 (rhBMP-2)
Notes:
- The Infuse Bone Graft is also known as bone morphogenic or morphogenetic protein-2, BMP-2.
- As indicated in the Clinical Evidence section below, the use of bone morphogenic protein as an adjunct to spinal fusion surgery may be associated with significant adverse events. Thus, before using bone morphogenic protein, the physician should engage in a shared decision-making process with the patient, discussing the potential advantages, harms and alternatives to the use of bone morphogenic protein as an adjunct to spinal fusion surgery.

Infuse® Bone Graft is proven and/or medically necessary for the enhancement of bone healing and/or fusion of the lumbar spine when the following criteria are met:
- Implanted via an anterior or oblique approach and used in conjunction with an Infuse Bone Graft fusion device
- Skeletally mature patient (18 years of age or older or radiographic evidence of epiphyseal closure) with degenerative disc disease at one level from L4-S1
- No more than Grade 1 spondylolisthesis at the involved level
- Failure of at least 6 months of non-operative treatment

For Infuse Bone Graft fusions devices, please see the Definitions section for Bone Morphogenetic Proteins (BMP) and Recombinant Human Bone Morphogenetic Proteins (rhBMP).

Infuse® Bone Graft is unproven and/or not medically necessary for ALL other indications including but not limited to:
- Enhancement of bone healing and/or fusion of the lumbar spine via a posterior approach.
- Treatment of cervical spine or any other area with or without use of other devices including the PEEK device.
- Known contraindications including:
 - Hypersensitivity to recombinant human Bone Morphogenetic Protein-2, bovine Type I collagen or to other components of the formulation
 - Pregnancy
 - Active infection at operative site or patient has an allergy to titanium or titanium alloy
- Planned use of grafting in the vicinity of a resected or extant tumor
- Skeletally immature patient (younger than 18 years of age or 18 years of age or older with no radiographic evidence of epiphyseal closure)

Available studies have demonstrated increased adverse events with the posterior approach. The safety and effectiveness of Infuse Bone Graft in the cervical spine have not been demonstrated. There is insufficient clinical evidence to support the use of Infuse Bone Graft with devices made of PEEK or other biocompatible materials. In addition, Infuse Bone Graft has not been approved by the FDA for use with PEEK cages.

The Infuse/MASTERGRAFT™ Posterolateral Revision Device system is:
- **Proven and/or medically necessary when used according to U.S. Food and Drug Administration (FDA) indications in patients who meet all of the following criteria:**
 - Implanted via a posterolateral approach
 - Presence of symptomatic posterolateral lumbar spine pseudoarthrosis
 - Skeletally mature patient (older than 21 years of age or radiographic evidence of epiphyseal closure)
 - Treatment of 2 or more levels of the lumbar spine
 - Autologous bone and/or bone marrow harvest is not feasible or is not expected to promote fusion. These patients are diabetics and smokers.

- **Unproven and/or not medically necessary for all other indications including the following:**
 - Known contraindications including:
 - Hypersensitivity to recombinant human Bone Morphogenetic Protein-2, bovine Type I collagen or to other components of the formulation
 - Known active malignancy or patients undergoing treatment for a malignancy
 - Pregnancy
 - Active infection at operative site
 - Planned use of grafting in the vicinity of a resected or extant tumor
 - Skeletally immature patient (younger than 18 years of age or 18 years of age or older with no radiographic evidence of epiphyseal closure)

Infuse/MASTERGRAFT Posterolateral Revision Device system has not received FDA approval for any other indications except those indicated as proven. The safety and effectiveness of Infuse/MASTERGRAFT Posterolateral Revision Device system has not been demonstrated for other conditions in studies published in peer-reviewed literature.

Bone Morphogenetic Protein-7 (BMP-7)

OP-1™ Implant and OP-1 Putty are unproven and/or not medically necessary for the enhancement of bone healing and/or fusion with or without use of other devices (including the PEEK device).

Use of BMP7 has not demonstrated accelerated healing. Available studies have been limited by substantial loss of study participants at follow-up as well as by short follow-up times.

Ceramic-Based Products

Ceramic-Based Products such as beta tricalcium phosphate (b-TCP), calcium phosphate, calcium sulfate and bioactive glass, used alone or in combination with other grafts including bone marrow aspirate are unproven and/or not medically necessary for the enhancement of bone healing and/or fusion.

Only very weak conclusions about effectiveness of Ceramic-Based Products may be drawn from studies because of small sample size, lack of control or comparison groups in most studies. The absence of a formal assessment of clinical outcomes in most studies limits the conclusions that can be drawn about the place of b-TCP in bone healing.
and fusion. Furthermore, definitive patient selection criteria have not been established for the use of b-TCP bone void fillers.

Note: For additional information on Ceramic-Based Products, please see the Definitions section.

Cell-Based Products

Cell-Based Products such as mesenchymal stem cells (MSC) are unproven and/or not medically necessary for the enhancement of bone healing.

Evidence in the published scientific literature has not demonstrated an improved health outcome benefit over standard therapies. Well-designed, large randomized comparative clinical trials are needed to demonstrate the efficacy and safety of MSC therapy for orthopedic indications.

Platelet-Rich Plasma (PRP)

Platelet-Rich Plasma (e.g., autologous platelet derived growth factor) is unproven and/or not medically necessary when used to enhance bone or soft tissue healing.

Evidence in the published scientific literature is inconsistent and does not lend strong support to the clinical utility of using PRP to augment bone or soft tissue healing. Most available studies are small, uncontrolled, retrospective, and/or have short follow-up periods, constituting significant methodological flaws which limit the utility of the studies in evaluating the benefits of PRP use.

OptiMesh®

The OptiMesh deployable grafting system is unproven and/or not medically necessary.

There is insufficient evidence that the use of OptiMesh will improve structural support of the vertebrae. Further studies are needed to evaluate safety and efficacy of this grafting system.

DEFINITIONS

Overview

Orthobiologics are designed to substitute for real bone, but they can also enhance bone-fracture healing or bone fusion by providing substances that are either osteoconductive or osteoinductive (described in further detail below). Some products may have both properties. Orthobiologics require an invasive surgical procedure to place the material in the bone void site or at the site of bone fusion.

- **Osteoconductive Matrix Materials:** Osteoconductive materials provide a three-dimensional substance into which capillaries, osteogenic cells, and other tissue can migrate and produce new bone. This material acts only as a scaffold into which the new bone cells grow.

- **Osteoinductive Bone Graft Substitutes:** Osteoinduction means that the product induces osteoblast formation from the patient's own osteogenic stem cells that are already present at the fusion site. The osteoinductive properties of bone tissue are attributed to bone morphogenetic proteins (BMPs).

Bone graft substitutes have overlapping properties and are made of a variety of materials such as polymers (degradable and nondegradable), ceramics and composites (calcium phosphate, calcium sulfate, and bioactive glass), factor-based techniques (recombinant growth factors) and cell-based techniques (mesenchymal stem cells).

Allograft: An Allograft is obtained from a person other than the surgical candidate. Harvested through a minimally invasive procedure, this Allograft provides a population of osteoprogenitor cells and critical growth factors that help cell differentiation, leading to bone healing. It can include cadaveric bone and/or tissue from a bone bank. It may be used alone or in combination with another material. Even when used alone, Allograft must be processed to decrease the likelihood of disease transmission and immunogenic response.

More recently, processing methods used for preparation of some Allografts have been refined and products are now available that manufacturers claim retain higher concentrations of naturally occurring growth factors and/or stem cells. Human growth factors such as fibroblast growth factor, insulin-like growth factor, platelet-derived growth factor, transforming growth factor-beta, and microglobulin-B, are examples of osteogenic growth factors that are naturally found within the matrix of bone.

Amniotic Tissue Membrane: Amniotic Tissue Membrane is part of the placenta in a pregnant woman. It can be harvested and stored in tissue banks and used in wound healing, including but not limited to use in spinal surgery.

Anorganic Bone Graft Materials: Anorganic Bone Graft Materials are a type of xenograft bone graft substitute made from other than human material, such as cow (i.e., bovine) or coral, and is typically used in combination with other types of bone graft materials, for example with collagen or a calcified matrix. The animal bone is processed to remove any organic components (i.e., anorganic bone material) reducing concerns of disease transmission or
immunogenic reactions. Some of the anorganic type xenograft materials may be used as stand-alone graft material to enhance healing.

Autograft: An Autograft is taken directly from the patient undergoing surgery. The usual site for an Autograft harvest is the posterior iliac crest. When Autograft material is of an insufficient volume, of poor quality, or cannot be used for any other reason, then another type of material must be used for the bone grafts.

Bone Morphogenetic Proteins (BMP) and Recombinant Human Bone Morphogenetic Proteins (rhBMP): Bone morphogenetic proteins are naturally occurring proteins found in human bone and play an active role in bone formation. There are currently fifteen bone morphogenetic proteins (BMPs) that have been identified. At present, some 20 different BMPs have been identified, all with varying degrees of tissue stimulating properties. An important use of rhBMP is for bone repair, especially in bones that have delayed union or nonunion of a fracture and to promote fusion of. Recombinant human bone morphogenetic protein also plays a role in cartilage formation and repair of other musculoskeletal tissues. Recombinant human bone morphogenetic proteins serve as alternatives or adjuncts to autologous (Autografts) bone grafts. They are intended to promote bone formation and enhance fracture healing, and may be used in spinal fusion surgery for degenerative disease to promote bone growth that results in fusion. These proteins may also be used for individuals who have up to grade I spondylolysis.

Infuse Bone Graft (Medtronic, Inc., Minneapolis, MN, USA) is a bone graft substitute intended to aid in fusing lumbar vertebrae using an anterior lumbar interbody fusion (ALIF) procedure, in combination with a titanium threaded cage implant to treat degenerative disc disease. The primary reason for using Infuse Bone Graft is to avoid the adverse events (AEs) (e.g., pain, infection) associated with harvesting autologous bone graft material from the patient. Infuse Bone Graft contains recombinant human bone morphogenetic protein-2 (rhBMP-2) applied to an absorbable collagen sponge.

Carrier systems, which are absorbed over time, function to maintain the concentration of the rhBMP at the treatment site, provide temporary scaffolding for osteogenesis and prevent extraneous bone formation. Carrier systems have included inorganic material, synthetic polymer, natural polymers and bone Allograft. The rhBMP and carrier may be inserted via a delivery system, which may also function to provide mechanical support. The carrier and delivery system are important variables in the clinical use of rhBMPs. For example, different clinical applications will require different dosages of rhBMP with different carriers and delivery systems. Therefore, the results of one clinical application cannot be extrapolated to others.

At the present time, two rhBMPs and associated carrier/delivery systems have received FDA approval. OP-1TM consists of rhBMP-7 and bovine collagen which is reconstituted with saline to form a paste. The addition of carboxymethylcellulose forms a putty. The Infuse system consists in part of rhBMP-2 on an absorbable collagen sponge carrier.

Infuse Bone Graft fusion devices include:
- Infuse Bone Graft/LT-Cage
- Infuse Bone Graft/Lumbar Tapered Fusion Device
- Infuse Bone Graft/Inter Fix™ Threaded Fusion Device
- Infuse Bone Graft/Inter Fix™ RP Threaded Fusion Device
- PERIMETER® Interbody Fusion Device
- Clydesdale® Spinal System

Cell-Based Products: One material proposed for use in combination with Allograft is mesenchymal stem cells (MSC), obtained from bone marrow aspirate. This is referred to as a cell-based product. Cell based substitutes use cells to generate new tissue either alone or seeded onto a support matrix.

Mesenchymal stem cells (obtained from bone marrow) are multipotent stem cells that can differentiate into a variety of cell types.

The use of mesenchymal and other Cell-Based Products is not medically necessary for use in spinal fusion and for intervertebral disc regeneration. Although currently under investigation, data published in the medical literature evaluating cell-based substitutes is in preliminary stages and mainly in the form of nonhuman trials; data supporting safety and efficacy for these indications are lacking.

Ceramic-Based Products: Ceramic-Based Products are synthetically produced. (They may also be referred to as synthetic bone grafts.) Ceramics are synthetic materials resulting from heating up chemically formed compounds that consequently bond together. Ceramic-Based Products include materials such as calcium phosphate, calcium sulfate and bioactive glass, used alone or in combination with other grafts. Several types of calcium phosphates, including tricalcium phosphate, synthetic hydroxyapatite, and coralline hydroxyapatite are available in pastes, putties, solid
matrices, and granules. Synthetic hydroxyapatite is brittle, has little tensile strength and is typically used for bone defects with internal fixation. Because each of these components has different binding, biodegradability, and adhesion characteristics, there is variability seen among carriers depending on composition.

Note: Bone void fillers are most commonly used in orthopedic surgery for filling defects; their use as such is considered a medically necessary part of the surgical procedure.

Combination Bone Graft Substitutes: A newer practice in the use of bone graft substitutes is to combine different materials, with the theory that each different property working together will work in synergy with another in the healing and grafting process.

Demineralized Bone Matrix (DBM): DBM is a type of Allograft; it is produced by acid extraction of Allograft bone, DBM may be a freeze-dried powder, granules, gel, (known as decalcification). Based on manufacturing techniques putty, or strips. After processing, the material contains 90% type I collagen and 10% noncollagen protein containing a variety of bone growth stimulators such as bone morphogenetic protein (BMPs). The bone growth stimulators induce osteoblast formation (osteinduction) from the patient's osteogenic stem cells. Added materials provide a three-dimensional substance into which capillaries, osteogenic cells, and other tissue can migrate and produce new bone (osteocDUCTION). DBM is commonly used as a bone graft extender for posterolateral spinal fusion surgery.

Mesh Grafting System: This is a sterile mesh graft knitted from polyester yarn made of polyethylene terephthalate (PET) thread. It is intended to maintain the relative position of Autograft or Allograft bone graft material.

Platelet-Rich Plasma: Platelet concentrate products are derived from Platelet-Rich Plasma (PRP), which involves concentrating whole blood through a centrifugation process. However, variability in processing methods, classification systems, and terminology has led to wide inconsistency in the results of its use in many orthopedic conditions, including bone healing.

APPLICABLE CODES

The following list(s) of procedure and/or diagnosis codes is provided for reference purposes only and may not be all inclusive. Listing of a code in this policy does not imply that the service described by the code is a covered or non-covered health service. Benefit coverage for health services is determined by the member specific benefit plan document and applicable laws that may require coverage for a specific service. The inclusion of a code does not imply any right to reimbursement or guarantee claim payment. Other Policies may apply.

<table>
<thead>
<tr>
<th>CPT Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0232T</td>
<td>Injection(s), platelet rich plasma, any site, including image guidance, harvesting and preparation when performed</td>
</tr>
<tr>
<td>20930</td>
<td>Allograft, morselized, or placement of osteopromotive material, for spine surgery only (List separately in addition to code for primary procedure)</td>
</tr>
<tr>
<td>20931</td>
<td>Allograft, structural, for spine surgery only (List separately in addition to code for primary procedure)</td>
</tr>
<tr>
<td>22558</td>
<td>Arthrodesis, anterior interbody technique, including minimal discectomy to prepare interspace (other than for decompression); lumbar</td>
</tr>
<tr>
<td>22585</td>
<td>Arthrodesis, anterior interbody technique, including minimal discectomy to prepare interspace (other than for decompression); each additional interspace (List separately in addition to code for primary procedure)</td>
</tr>
<tr>
<td>22899</td>
<td>Unlisted procedure, spine</td>
</tr>
</tbody>
</table>

CPT® is a registered trademark of the American Medical Association

<table>
<thead>
<tr>
<th>HCPCS Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q4100</td>
<td>Skin substitute, not otherwise specified</td>
</tr>
<tr>
<td>Q4131</td>
<td>EpiFix or Epicord, per sq cm</td>
</tr>
<tr>
<td>Q4149</td>
<td>Excellagen, 0.1 cc</td>
</tr>
</tbody>
</table>

DESCRIPTION OF SERVICES

The composition of allograft and synthetic bone graft substitutes and their mechanism of action can vary widely. Bone graft materials are often combined to extend graft availability and enhance healing. Used alone or in combination, bone graft substitutes may be utilized for many orthopaedic applications including spinal fusion.
Many bone graft substitute products are available in the U.S. marketplace. The American Academy of Orthopedic Surgeons has created a list of these products available in 2010 that provides the company name, composition, commercially available forms, claimed mechanism of action, burdens of proof, and FDA status of the products.

CLINICAL EVIDENCE

Bone Morphogenetic Protein (rhBMP or BMP)

Hayes (2016) The literature search identified 23 controlled or comparative studies of rhBMP-2 or rhBMP-7 for spinal fusion described in 25 publications. The available studies suggest that, compared with autograft, use of rhBMP-2 for lumbar spinal fusion provides minor, short-term benefits, and poses some risk. For most patients, use of rhBMP-2 does not seem to provide greater long-term benefit than autograft, and it has not been possible to rule out certain serious long-term risks. The small number of available studies for cervical spinal fusion precludes conclusions for this indication.

ECRI (2017) reviewed the evidence of five clinical studies of anterior interbody lumbar fusion. The authors reported a consensus statement for ALIF and use of Infuse increased the fusion rate compared with iliac crest bone graft (ICBG) but suggested that patients be informed of potential complications associated with Infuse. The consensus statement for ALIF using Infuse included the following:

Based upon the published literature, we conclude that rhBMP-2 is likely associated with an increased rate of radiographic arthrodesis when compared with ICBG (iliac crest bone graft). However, this does not necessarily translate to an improvement in clinical outcomes. Although rhBMP-2 limits the morbidity associated with harvesting ICBG, which may explain the shorter operative times and less blood loss, patients should be counseled regarding the potential complications that are specific to rhBMP-2 utilization including osteolysis and retrograde ejaculation. rhBMP-2 may also be associated with lumbar plexopathy when utilized in the transpsoas lumbar fusion cases.

Faundez et al. (2016) conducted an extensive review of randomized controlled trials (RCTs) and controlled series. Review confirmed that the use of rhBMP-2 following FDA-approved recommendations (i.e. one-level ALIF surgery with an LT-cage) is safe. The rate of complications is low and the AEs had been identified by the FDA during the pre-marketing clinical trials. The clinical efficiency of rhBMP-2 is equal or superior to that of allogenic or autologous bone graft in respect to fusion rate, low back pain disability, patient satisfaction and rate of re-operations. For all other off-label use, the safety and effectiveness of rhBMP-2 have not been established, and further RCTs with high level of evidence are required.

Adams et al. (2014) conducted a retrospective cohort study to compare clinical outcomes, fusion rates, and rates of complications in posterior lumbar interbody fusion (PLIFs) and transformaminal lumbar interbody fusion procedures with either recombinant human bone morphogenetic protein-2 (rhBMP-2) and local bone graft (LBG) or LBG alone used as graft material. All patients who underwent primary interbody fusions under a single surgeon were identified from the surgeon’s records. A retrospective review of prospectively collected data preoperatively and up to 12 months postoperatively was performed. Data collected included visual analogue scale, pain scores for back and leg, Oswestry Disability Index scores, Short-Form 36 (SF-36), standing lumbar radiographs, and clinical notes. Seventy-seven patients met the study criteria and 70 consented to be part of the study. Fifty-one were treated with rhBMP-2 and 19 with LBG. At 12-month follow-up, no significant differences were seen in visual analogue scale score, Oswestry Disability Index score, or SF-36 scores. A total of 89.5% of the LBG group and 94.1% of the rhBMP-2 group went on to show radiographic evidence of fusion by 12-month follow-up. The rhMBP-2 group had a higher complication rate (41.2% vs. 10.5%). The authors concluded that there was no difference in clinical outcomes, comparable rates of fusion and a significant increase in complication rates with rhBMP-2. Using rhBMP-2 may unnecessarily increase the risk of complication in routine PLIF and transformaminal lumbar interbody fusion procedures.

In a prospective, longitudinal cohort study of 688 patients from 3 studies, Burkus et al. (2011) analyzed antibody formation to BMP-2, bovine collagen, and human collagen after three prospective clinical studies investigating rhBMP. Neutralizing antibodies were assessed using a cell bioassay. The incidence of antibodies to bovine and human collagen was determined. Radiographic and clinical outcome data were assessed to determine whether antibodies were correlated to patient outcomes. The authors concluded that formation of anti-BMP-2 antibodies was low and transient. No neutralizing antibodies were observed. Formation of antibodies did not affect fusion success or appear to have clinical sequelae.

Carragee et al. (2011) conducted a comparison review of original publication conclusions to FDA database results. In 13 industry-sponsored studies with 780 patients the authors concluded that “Level I and Level II evidence from original FDA summaries, original published data, and subsequent studies suggest possible study design bias in the original trials, as well as a clear increased risk of complications and adverse events to patients receiving rhBMP-2 in
spinal fusion. This risk of adverse events associated with rhBMP-2 is 10 to 50 times the original estimates reported in the industry-sponsored peer-reviewed publications."

A systematic review by Mroz et al. (2010) compared rate of complications after the use of BMP in spine fusion surgery. Incidence rate: 44% resorption, 25% subsidence, and 27% interbody cage migration. The authors concluded that "The complication profile of BMP-2 for [anterior lumbar interbody fusion] ALIF with LT-CAGE is well characterized. Because of the lack of substantive data, the same is not true for other types of lumbar fusions, or for cervical or thoracic fusion applications. BMP has been associated with a variety of unique complications in the ventral cervical and lumbar spines. The published data on BMP fail to precisely profile this product's use in fusion surgery; hence, it should be used only after a careful consideration of the relevant data. Well-designed and executed studies are necessary to completely define the incidence of various complications relative to type of BMP, type and region of fusion, surgical technique, dose, and carrier, and importantly, to define the natural history and management of associated complications."

A systematic review by Agarwal et al. (2009) compared the efficacy and safety of osteoinductive bone graft substitutes using autografts and allografts in lumbar fusion. Of 732 potential studies, 17 studies met the inclusion criteria (nine examined rhBMP-2, three examined rhBMP-7, three examined demineralized bone matrix, and two examined autologous growth factor). Primary outcome measures were nonunion as defined by failure to fuse as demonstrated on CT scans or plain x-rays. Secondary outcome measures were failure to demonstrate improvement on the Oswestry Low-Back Pain Disability Questionnaire (or Oswestry Disability Index [ODI]). When compared with autologous iliac crest bone graft (AIBG), recombinant human BMP-2 significantly increased union as evidenced by radiographic imaging, while rhBMP-7 showed no difference in radiographic nonunion. Neither rhBMP-2 nor rhBMP-7 demonstrated a significant improvement on the Oswestry Disability Index when compared with (AIBG). The controlled trials of demineralized bone matrix or autologous growth factor in comparison with AIBG showed no significant differences in radiographic nonunion. The authors concluded that rhBMP-2 may be an effective alternative to facilitate lumbar fusion in single-level lumbar DJD compared to AIBG. However, the data is limited for rhBMP-7, demineralized bone matrix, and autologous growth factor. The authors note the following limitations: English only published studies were reviewed; there were no double blinded studies; analyses of the efficacy of bone graft substitutes other than rhBMP-2 was limited by the study size and number; and there is a potential for bias because device manufacturers sponsored several studies and more than 1 author reported conflicts of interest.

Bone Morphogenetic Protein-2 (BMP-2) Lumbar Spine

Rodgers et al. (2013) investigated published results of industry funded trials of recombinant human bone morphogenetic protein 2 (rhBMP-2) in spinal fusion matching underlying trial data by comparing three different data sources: individual participant data, internal industry reports, and publicly available journal publications and conference abstracts. Outcomes from 11 of the 17 manufacturer-sponsored studies were reported in 32 publications. The authors concluded that the published literature only partially represents the total data known to have been collected on the effects of rhBMP-2. This did not lead to substantially different results for meta-analysis of effectiveness outcomes. In contrast, reporting of adverse event data in trial publications was inadequate and inconsistent to the extent that any systematic review based solely on the publicly available data would not be able to properly evaluate the safety of rhBMP-2. Analysis of individual participant data enabled the most complete, detailed, and in-depth analysis and was not more resource intensive than extracting, collating, and analyzing aggregate data from multiple trial publications and conference abstracts. Confidential internal reports presented considerably more adverse event data than publications, and in the absence of individual participant data access to these reports would support more accurate and reliable investigation, with less time and effort than relying on incomplete published data.

In a systematic review and meta-analysis of randomized, controlled trials and cohort studies by Fu et al. (2013), the clinical effectiveness of BMP-2 in spine fusion was assessed. This review found that in spinal fusion, rhBMP-2 has no proven clinical advantage over bone graft and may be associated with important harms, making it difficult to identify clear indications for rhBMP-2. Earlier disclosure of all relevant data would have better informed clinicians and the public than the initial published trial reports did.

Simmonds et al. (2013) also conducted a systemic review of individual patient data from all of the studies sponsored by the manufacturer, related internal documents, Food and Drug Administration (FDA) documents, and other published research to assess the effectiveness and harms of rhBMP-2 in spinal fusion compared with iliac crest bone graft or other bone grafts. The authors concluded that rhBMP-2 was associated with a small increase in fusion but greater immediate postoperative pain compared with iliac crest bone graft (ICBG). At 2 years, rhBMP-2 offered no clinically important pain reduction and was associated with a possible increased risk for cancer. While rhBMP-2 recipients had nearly double the number of new cancers compared with ICBG recipients, the overall absolute risk for cancer was low in both groups. The investigators could not rule out a bias in pain assessment because participants were not blinded to the treatment received or their fusion status.
The U.S. Food and Drug Administration reported a higher incidence of cancer in patients who had spinal arthrodesis and were exposed to a high dose of recombinant human bone morphogenetic protein-2 (rhBMP-2). The purpose of this study was to determine the risk of cancer after spinal arthrodesis with BMP. Kelly et al. (2014) performed a retrospective analysis of the incidence of cancer in 467,916 Medicare patients undergoing spinal arthrodesis from 2005 to 2010. Patients with a preexisting diagnosis of cancer were excluded. The main outcome measure was the relative risk of developing new malignant lesions after spinal arthrodesis with or without exposure to BMP. The relative risk of developing cancer after BMP exposure was 0.938. In the BMP group, 5.9% of the patients developed an invasive cancer compared with 6.5% of the patients in the control group. The relative risk of developing cancer after BMP exposure was 0.98 in males and 0.93 in females. The control group showed a higher incidence of each type of cancer except pancreatic cancer. The authors concluded that recent clinical use of BMP was not associated with a detectable increase in the risk of cancer within a mean 2.9-year time window.

In a systematic review and analysis of randomized controlled trials by Garrison et al. (2007), the clinical effectiveness of BMP for the treatment of spinal fusions and the healing of fractures was compared with the current standards of care. This review found that there was evidence that BMP-2 is more effective than autogenous bone graft for radiographic fusion in patients with single-level degenerative disc disease. No significant difference was found when BMP-7 was compared with autograft for degenerative spondylolisthesis with spinal stenosis and spondyloysis. The use of BMP was associated with reduced operating time, improvement in clinical outcomes and a shorter hospital stay as compared with autograft. The proportion of secondary interventions tended to be lower in the BMP group than the control, but not of statistical significance. The authors concluded that the available evidence indicates that rhBMP-2 may promote healing in patients undergoing single-level lumbar spinal fusion, and may result in higher rates of fusion compared with autogenous bone graft. All selected trials were found to have several methodological weaknesses, including insufficient sample size, such that the statistical power to detect a moderate effect was low.

Burkus et al. (2009) reported 6 year outcomes of 222 patients (112 open; 110 laparoscopic) who received anterior lumbar interbody arthrodesis using interbody fusion cages and recombinant human bone morphogenetic protein-2 (rhBMP-2). Of the 222 enrolled patients, 146 patients (78 open; 68 laparoscopic) completed the 6 year clinical follow-up evaluations with 130 patients having a complete radiographic follow-up at 6 years. Outcomes were measured utilizing the Oswestry Disability Index (ODI) scores, Short Form-36 health survey physical component summary scores, and back and leg pain scores preoperatively and at 6 weeks and 3, 6, 12, 24,48, and 72 months postoperatively. Plain radiographs and thin-cut computed tomography scans were used to assess fusion status. At follow-up, fusion was confirmed in 128 of the 130 patients undergoing radiographic follow-up. Twenty-five patients required a second surgery. Improvements were achieved by 6 weeks in both the open and laparoscopic groups and were sustained at 6 years in the Oswestry Disability Index scores, Short Form-36 health survey physical component summary scores, and back and leg pain scores. The authors concluded that the use of rhBMP-2 on an absorbable collagen sponge is effective for obtaining anterior intervertebral spinal fusion with use of a stand-alone interbody fusion device. The lack of comparison to iliac crest bone graft or other treatment is a limitation of the study.

In another multi-center study by Burkus et al. (2006), 131 patients were randomized to compare healing and fusion rates after anterior lumbar interbody fusion (ALIF) with either autograft of rhBMP-2. Patients with lumbar spondylosis who were undergoing single-level ALIF with allograft dowels were randomly assigned to either rhBMP-2 (79 patients) as the investigational group or autologous bone graft (52 patients) as the control group. Plain radiographs and computed tomography scans were used to evaluate fusion. At 12 and 24 months, all of the investigational patients had radiographic evidence of new bone formation and incorporation of the allografts into the adjacent vertebral endplates. Radiographic evidence of fusion was documented in 89% of patients in the control group at 12 months. This percentage declined to 81.5% at 24 months with 10% of the patients in the autograft group showing incomplete healing and 11% having no healing of the allograft dowels. On CT scan, 14 (18%) of the patients in the BMP group developed a transient, localized area of bone remodeling within the vertebral body adjacent to the allograft dowel; this disappeared by 24 months.

Glassman et al. (2008) conducted a prospective randomized controlled trial of rhBMP-2/ACS (Infuse bone graft) versus iliac crest bone graft (ICBG) for posterolateral lumbar spine fusion in patients over 60 years of age. Patients were randomized to rhBMP-2/ACS (n = 50) or ICBG (n = 52). Two-year postoperative improvement in Oswestry Disability Index averaged 15.8 in the rhBMP-2/ACS group and 13.0 in the ICBG group. Mean improvement in Short Form-36 physical component score was 6.6 in the rhBMP-2/ACS group and 7.5 in the ICBG group. There were 20 complications in the ICBG group and 8 complications in the rhBMP-2/ACS group. Sixteen ICBG and 10 rhBMP-2/ACS patients required additional treatment for persistent back or leg symptoms. Two rhBMP-2/ACS patients had revision procedures, 1 for nonunion. Eight patients in the ICBG group had revision procedures, 5 for nonunion. Mean fusion grade on computed tomography scan was significantly better in the rhBMP-2/ACS (4.3) compared with the ICBG group (3.8). The investigators concluded that RhBMP-2/ACS is a viable ICBG replacement in older patients in terms of safety, clinical efficacy, and cost-effectiveness. The conclusions of this study are limited by small sample size.
Dimar et al. (2009) conducted a multicenter, prospective, randomized study of 463 patients at 29 sites. Patients had symptomatic single-level lumbosacral degenerative disease with no greater than grade-1 spondylolisthesis treated with single-level instrumented posterolateral arthrodesis through an open midline approach. Patients were randomly assigned to receive either the recombinant human bone morphogenetic protein-2 matrix group (239 patients) or the autogenous iliac crest bone-graft group (224 patients). Outcomes were evaluated with the Oswestry Disability Index, Short Form-36, and back and leg pain scores preoperatively and at 1.5, 3, 6, 12, and 24 months postoperatively. Radiographs and computed tomography scans were made at 6, 12, and 24 months postoperatively to evaluate for fusion. Of the 463 patients who had surgery, 410 (194 iliac crest bone graft group and 216 rhBMP-2 matrix group) were available for assessment at 2 years after surgery. Both groups showed similar improvements in clinical outcomes and reduced pain. Radiographic and computed tomography scans showed a greater incidence of fusion in the rhBMP-2 group. Patients requiring a second surgery was higher in the iliac crest bone graft group (36 patients vs. 20) than the rhBMP-2 group. The authors concluded that the use of recombinant human bone morphogenetic protein-2 in instrumented posterolateral lumbar arthrodesis produces earlier and higher fusion rates than does iliac crest bone graft.

A prospective, randomized trial by Dawson et al. (2009) investigated the use of rhBMP-2 on an absorbable collagen sponge combined with a ceramic-granule bulking agent as a replacement for autogenous iliac crest bone graft in single level posterolateral lumbar arthrodesis with instrumentation. Patients were randomized to receive either a solution of rhBMP-2 on two strips of absorbable collagen sponge combined with ceramic granules (n=25) or iliac crest bone graft (n=21). Outcomes were measured by the Oswestry Disability Index (ODI) and Short Form-36 scores, as well as back and leg pain scores. Radiographs were evaluated to determine fusion. Both groups had similar outcomes in the Oswestry Disability Index (ODI), Short Form-36 scores, back and leg pain scores. Patients in the rhBMP-2 group showed greater incidence of fusion compared to the iliac crest bone graft group (95% vs. 70%). The authors concluded that compared with an iliac crest bone graft, the combination of an absorbable collagen sponge soaked with rhBMP-2 and ceramic granules resulted in greater improvements in clinical outcomes and a higher rate of fusion.

A retrospective review by Rihn et al. (2009) evaluated complications associated with single-level transforaminal lumbar interbody fusion in 119 patients (33 patients with iliac crest autograft and 86 patients with rhBMP-2). Complications occurred in 40 patients. The authors found that the most common complication in the autograft group was related to the donor site while postoperative radiculitis was the most common complication in the rhBMP-2 group.

Singh et al. (2006) compared the use of iliac crest bone graft (ICBG) with Infuse BMP in 41 patients vs. ICBG alone for lumbar spinal fusion. At 2-year follow-up, the ICBG with Infuse BMP group achieved an overall fusion rate of 97%. The ICBG alone group achieved a 77% fusion rate. Glassman et al. 2005 randomized patients with single level lumbar degenerative disease in a study of lumbar spine fusion using ICBG (n=36) vs. BMP (n=38). The results of 74 patients at 1-year follow-up were analyzed. Of the ICBG group, 66% achieved grade 4 or 5 fusion and of the BMP group, 89% achieved 4 or 5 fusion. However, because of the small sample size, these differences are not significant.

Haid et al. (2004) studied single-level posterior lumbar interbody fusion in 67 patients. Patients were randomly assigned to one of two groups: 34 patients received rhBMP-2 on a collagen sponge carrier and 33 patients received an autogenous iliac crest bone graft. The mean operative time and blood loss for the two groups were not significantly different. At 24 months follow-up, the group receiving rhBMP-2 had a fusion rate of 92.3%; the group receiving autogenous iliac crest bone graft had a fusion rate of 77.8%. No significant differences were found in the mean Oswestry Disability Index, back and leg pain scores and physical components of the SF-36. Two adverse events related to the harvesting of the iliac crest graft occurred in two patients.

Bone Morphogenetic Protein-2 (BMP-2) Cervical Spine
Cole et al. (2014) performed a retrospective database study from 2006 to 2010. The authors identify 91,543 patients who underwent anterior cervical discectomy and fusion (ACDF) with or without cervical corpectomy. A total of 3197 patients were treated with rhBMP intraoperatively. Mean follow-up was 588 days in the non-treated cohort and 591 days in the rhBMP-treated cohort. Multivariate logistic regression as well as propensity score analysis were used to evaluate the association of rhBMP usage with postoperative complications. Authors reported an overall rate of postoperative complications in patients receiving rhBMP for cervical spinal fusion procedures compared with patients not receiving rhBMP. Hematoma or seroma, pulmonary complications, and dysphagia were also more common in the rhBMP cohort.

Smucker et al. (2006) examined off-label use of BMP-2 to determine if BMP-2 is associated with an increased incidence of clinically relevant post-operative prevertebral swelling problems in patients undergoing anterior cervical fusions. A total of 234 consecutive patients (aged 12-82 years) undergoing anterior cervical fusion with and without BMP-2 over a 2-year period at one institution comprised the study population. The incidence of clinically relevant prevertebral swelling was calculated. The populations were compared and statistical significance was determined. A total of 234 patients met the study criteria, 69 of whom underwent anterior cervical spine fusions using BMP-2; 27.5% of those patients in the BMP-2 group had a clinically significant swelling event versus only 3.6% of patients in the
non-BMP-2 group. This difference was statistically significant (p < 0.0001) and remained so after controlling for other significant predictors of swelling. The authors concluded that off-label use of BMP-2 in the anterior cervical spine is associated with an increased rate of clinically relevant swelling events.

A retrospective review by Yaremchuk et al. (2010) compared the incidence and severity of complications in patients undergoing cervical spinal procedures. A total of 775 patients were included. BMP was utilized in 260 of these patients. The authors found that patients in the BMP group had a higher incidence of acute airway obstruction. This was due to an extensive soft-tissue inflammatory reaction that is most likely to occur 2 to 7 days after surgery.

Clinical Trials
Several clinical trials have been initiated to study the effect of bone morphogenetic protein for spinal surgery. Additional information is available at: http://clinicaltrials.gov/ct2/results?term=Bone+Morphogenetic+Protein&recr=Open. (Accessed November 30, 2017)

Professional Societies
North American Spine Society (NASS)
The North American Spine Society (NASS, 2014) has coverage recommendations for the recombinant human bone morphogenetic protein-2 (rhBMP-2). The Society notes that coverage recommendations do not represent a 'Standard of Care' nor are they intended as a fixed treatment protocol.

Complications of the Use of Bone Morphogenetic Proteins
Although early evidence supports safety and efficacy when used according to FDA indications, adverse events have been reported which include ectopic bone formation, bone resorption or remodeling at the graft site, hematoma, neck swelling, and painful seroma (Dural tears, bowel/bladder and sexual dysfunction, failure to fuse and paralysis have also been reported as well as carcinogenicity and teratogenic effects. Recently there has been concern more specifically about safety and efficacy of rhBMP-2 used in spinal fusion surgeries.

In mid-2013 two major meta-analyses were published based on individual subject data supplied by Medtronic, Inc. through Yale University Open Data Access (YODA) Project. This has prompted surgeons to reassess their use of the rhBMP-2 in spine fusion procedures. Two groups were selected by YODA in an open competition to synthesize evidence regarding the safety of rhBMP-2 (Fu, 2013; Simmonds, 2013). The analyses used de-identified data from industry-sponsored RCTs of rhBMP-2 vs. iliac crest bone graft when used during spinal fusion surgery for degenerative disc disease and related conditions. Additional data of similar populations from observational studies were also used for investigation of adverse events.

The meta-analysis conducted by the group led by Simmonds included subject-level data from 11 RCTs, regardless of spinal level or surgical approach. Adverse event data was also collected from an additional 35 observational studies. The authors reported that at 24 months, rhBMP-2 increased the rate of radiographic fusion by 12%, and improved mean scores on the ODI by 3.5%. The improvement in ODI did not reach the previously defined threshold for a clinically significant effect. Subjects who received rhBMP were reported to have a clearly higher incidence of leg and back pain in the immediate postoperative period. This contrasts with the data for 3 months postoperatively, where recipients of rhBMP had less pain than subjects who had allograft treatment. There was an almost 2-fold increased risk of cancer reported in subjects treated with rhBMP-2. However, due to the small number of events recorded, confidence intervals were large and definite conclusions could not be drawn. The overall risk of cancer was low with either rhBMP or autograft procedures. With regard to adverse events analysis from the observational studies, the risk of heterotopic bone formation, leg pain and radiculitis, retrograde ejaculation, and osteolysis were all more frequent in subjects receiving rhBMP during lumbar spinal fusion. Among subjects undergoing cervical spine procedures, dysphagia was more common in rhBMP subjects. The authors note that there was weak correlation between spinal fusion rates and reduction in pain scores.

The meta-analysis by Fu and colleagues included individual subject data from 13 RCTs and 31 cohort studies. They found that rhBMP-2 and iliac bone crest autograft resulted in similar effectiveness outcomes for both lumbar and cervical fusion. An increased risk of cancer was found, but data were not sufficient to determine if risk was related to dose, and increased risk was no longer significant at 48 months. Event rates were low, and the types of cancers recorded were heterogeneous. Pain was more common shortly after surgery with rhBMP-2. The authors concluded that the use of rhBMP provides no additional advantage over autologous bone grafting and may be associated with significant risk of harm. In their analysis on the quality of available data, they reported that there was significant reporting bias in the journal publications and they state, "Early journal publications misrepresented the effectiveness and harms through selective reporting, duplicate publication, and under-reporting."

A report by Glassman and colleagues describes a retrospective case review of 1037 subjects who underwent posterolateral spine fusion using rhBMP-2, with a focus on complication rates (2011). They reported that medical and surgical complications were observed in 190 of 1037 subjects, with 81 major complications and 110 minor
complications. New or more severe postoperative radicular symptoms were noted in 7 subjects. Complications directly related to rhBMP-2 were observed in at least 1 and in a worst case analysis, in as many as 6 subjects. The authors concluded that, "there were extremely few complications directly attributed to rhBMP-2/ACS, and the overall complication rates were consistent with established norms."

Chrastil and others (2013) published a systematic review of the spectrum of complications reported in the literature after posterior interbody fusions of the lumbar spine augmented with BMP. Seventeen articles were identified and reviewed that addressed the use and complications of BMP use during PLIF and TLI procedures. The studies ranged from level I prospective randomized trial to case reports of complications. The authors reported appreciable rates of BMP-specific complications, including heterotopic ossification within the epidural space or neuroforamina, postoperative radiculitis, and endplate osteolysis with interbody device subsidence. They conclude by stating, "High-quality clinical trials should be initiated to develop appropriate paradigms to maximize the safety and efficacy of BMP for posterior interbody fusions."

According to Carragge, et al. (2011), who in a systematic review compared conclusions regarding safety and efficacy published in the original rhBMP-2 industry-sponsored trials when used for spinal fusion to data published following the FDA approval, the risk of adverse events associated with rhBMP-2 for spinal fusion was found to be "10 to 50 times the original estimates calculated from the industry-sponsored peer-reviewed publications."

Devine et al. (2012) performed a systematic review of the literature of articles published through January 2012. Results: Five published peer-reviewed studies and two FDA safety summaries reported the occurrence of cancer in patients treated with spinal fusion using rhBMP-2 or rhBMP-7. Cancer data for on-label use of rhBMP-2 (Infuse) were reported in the FDA data summary but not in one published pivotal study. The risk of cancer was the same in both the rhBMP-2 and control groups, 0.7% after 24 months. Off-label use of rhBMP for posterolateral fusion (PLF) was associated with a slightly higher risk of cancer compared with controls in three randomized controlled trials and one poorly conducted retrospective cohort study at various follow-ups. Conclusions: Cancer risk with BMP-2 may be dose dependent, illustrating the need to continue to study this technology and obtain longer follow-up on patients currently enrolled in the FDA trials. Additionally, refined guidelines regarding the routine use of BMPs should be developed, taking into account the FDA summary data that is not routinely scrutinized by the practicing surgeon.

A review by Epstein (2011) found that complications associated with the use of bone morphogenetic proteins in spinal surgery include excessive or abnormal placement of bone formation, paralysis (cord, nerve damage), dural tears, bowel bladder and sexual dysfunction, airway related complications such as obstruction, dyspnea, dysphagia and respiratory failure, inflammation of adjacent tissues, fetal developmental complications, scar, and excessive bleeding.

Dmitriev et al. (2011) studied the deleterious effects, at the cellular level, of exogenous high-dose rhBMP-2 on the central and peripheral nervous system. They conclude that although rhBMP-2 and similar growth factors may promote bone induction, the relative benefits of rhBMP-2 fusion rates compared with potential and observed complications have not been well reported or analyzed, particularly in off-label indications. The range of negative or adverse effects with the use of this product has only recently become the subject of systematic research. Although this study was performed in a rodent model, the authors raise some very important questions about the true impact of rhBMP-2 when applied around cells of the nervous system. Finally, although rhBMP-2 has certain specific indications, its dosage, delivery route, and carrier materials, and the mechanism of each contributing to observed complications, warrant significant further evaluation.

Carragge et al. (2011) conducted a retrospective review to evaluate the incidence of retrograde ejaculation in 243 male patients undergoing anterior lumbar interbody fusion (ALIF). Sixty nine patients had ALIF with rhBMP-2 while 174 patients underwent ALIF without BMP. Of the 69 patients in the rhBMP group, 6 developed retrograde ejaculation. At 1 year after surgery, 3 of the 6 affected subjects reported resolution of the retrograde ejaculation.

Original industry-supported studies reported positive outcomes with no unanticipated adverse events for the use of rhBMP-2 as a bone graft substitute. However, complications associated with this product are now being reported. Helgeson et al. (2011) retrospectively reviewed the incidence of osteolysis (the gradual disintegration of bone) following the use of rhBMP2 in posterior and transforaminal lumbar interbody fusions in 23 patients. The rate of osteolysis decreased at 1 year compared with 3 to 6 months, but only 24% of the vertebral bodies with evidence of osteolysis at 3 to 6 months completely resolved by 1 year. The area/rate of osteolysis did not appear to significantly affect the rate of fusion or final outcome with an overall union rate of 83%.

Carragge et al. (2011a) completed a comparative review of FDA documents and subsequent publications for originally unpublished adverse events and internal inconsistencies. From this review, an estimate of adverse events associated with rhBMP-2 use in spine fusion varies from 10% to 50% depending on approach. Anterior cervical fusion with rhBMP-2 has an estimated 40% greater risk of adverse events with rhBMP-2 in the early postoperative period, including life-threatening events. After anterior interbody lumbar fusion rates of implant displacement, subsidence,
infection, and retrograde ejaculation were higher after using rhBMP-2 than controls. Posterior lumbar interbody fusion use was associated with radiculitis, ectopic bone formation, osteolysis, and poorer global outcomes. In posterolateral fusions, the risk of adverse effects associated with rhBMP-2 use was equivalent to or greater than that of iliac crest bone graft harvesting, and 15% to 20% of subjects reported early back pain and leg pain; higher doses of rhBMP-2 were also associated with a greater apparent risk of new malignancy. The authors concluded that Level I and Level II evidence from original FDA summaries, original published data, and subsequent studies suggest possible study design bias in the original trials, as well as a clear increased risk of complications and adverse events to patients receiving rhBMP-2 in spinal fusion. This risk of adverse events associated with rhBMP-2 is 10 to 50 times the original estimates reported in the industry-sponsored peer-reviewed publications.

One potential advantage of use of rhBMP-2 is the reduction of ileac crest pain from the donor site. Howard et al. (2011) studied 112 patients to identify the source of pain after autologous bone graft during fusion. The results of their study highlight the difficulty in differentiating pain originating from the graft site versus residual low back pain. The incidence of pain over the iliac crest was similar in patients in which iliac crest was harvested and those in which no graft was harvested.

At this time there are no clinical trials available describing the use of rhBMP during thoracic spinal fusion procedures.

Bone Morphogenetic Protein-7 (BMP-7)

OP-1™ Putty is a recombinant human bone morphogenetic protein-7 (rhBMP-7) and type 1 bovine bone collagen matrix combined with the putty additive carboxymethylcellulose sodium. It is intended to aid in treating lumbar spine pseudoarthrosis. According to the company website, OP-1 Putty is used during revision lumbar spinal fusion procedures. In a typical procedure, after preparing the spine and placing the fixation devices, the surgeon places OP-1 Putty in the lateral gutters on both sides of the spine bridging the dorsal surfaces of the transverse processes.

The FDA approved the OP–1 Implant and the OP–1 Putty for use in specifically-defined patients under a humanitarian device exemption (HDE).

ECRI (2013) reviewed the abstracts of in four abstracts of three studies (two abstracts described one RCT) and results from an RCT described in the product’s package insert suggests that OP-1 Putty works as indicated when used to aid lumbar fusion and that it works as well as autologous bone graft material. Evidence from our review of abstracts of three studies and results from an RCT described in the product’s package insert suggests that OP-1 Implant works as indicated when used to aid in the healing of long-bone nonunion fractures and that it works as well as autologous bone graft material.

A prospective, randomized, controlled, multicenter clinical study of 36 patients by Delawi et al. (2010) evaluated the use of OP-1 Putty in single level posterolateral lumbar fusion. Patients were equally divided into 2 treatment groups (OP-1 Putty and autologous iliac crest bone graft) and followed for 1 year. Outcomes were measure by computed tomography scans to evaluate presence or absence of fusion, Oswestry Disability Index (ODI) and Visual Analog Scale (VAS). Eight patients were excluded from the final analysis due to protocol violations (n=4) and failure to complete 1 year follow-up (n=2). Fusion rates at 1 year were similar between the 2 groups (OP-1 group = 63%, bone graft group = 67%). There were no significant differences in ODI scores for both groups. Adverse events were experienced by 17 patients. The authors concluded that OP-1 Putty is as effective as iliac crest bone graft in posterolateral fusion while avoiding the morbidity associated with harvesting autogenous bone grafts from the pelvis. The study is limited by small sample size, short term follow-up, and different levels of fusion between the 2 groups.

A multicenter, prospective, 2:1 randomized controlled trial by Vaccaro et al. (2008) compared OP-1 Putty (n=208) with iliac crest autograft (n=87) in patients with symptomatic degenerative spondylolisthesis and spinal stenosis treated with decompression without a device for posterolateral arthrodesis. Patients were followed at 6-weeks, and 3, 6, 9, 12, 24-months. Outcomes were measured by Oswestry Low Back Pain Disability (ODI) questionnaire, Visual Analog Scale (VAS), Short-Form 36 (SF-36) outcomes survey and x-ray studies. In addition, serum samples were examined at regular intervals to assess the presence of antibodies to OP-1. At 24-months, patients were recruited to participate in a 36 month assessment. At 36 months, 202 of the original patients (144 OP-1 Putty patients and 58 autograft patients) underwent CT and flexion/extension x-ray studies to assess fusion success. By 36 months, 74.8% of the OP-1 patients and 77.4% of the autograft patients showed presence of new bone. Improvement from baseline in ODI was seen in 74.5% of OP-1 patients and 75.7% of autograft patients at 24 months and 68.6 % of OP-1 patients and 77.3% of autograft patients at 36 months. While neurologic improvements were noted, there was no difference between the groups by 36 months. Both groups reported significant decreases in pain on VAS; however there were no significant differences between the 2 groups in terms of VAS scores. Patients in the OP-1 Putty group showed early formation of anti-OP-1 antibodies, however this completely resolved in all patients by 24 months. The authors concluded that OP-1 Putty is comparable to iliac crest autograft and is an effective alternative for posterolateral spinal arthrodesis performed without a device for degenerative spondylolisthesis and symptomatic spinal stenosis. However, the study did not compare outcomes between the use of a fusion devices and no device.
Technology Assessments

Technology assessments evaluating the safety and efficacy of bone graft substitutes in general were not found in the medical literature. Although the American Academy of Orthopaedic Surgeons does not have a formal position statement, the Orthopaedic Device Forum initially published a document addressing the use of bone graft substitutes. The Agency for Healthcare Research and Quality (AHRQ) in 2010 concluded that the evidence supports the use of rhBMP-2 for fusion of the lumbo-sacral spine. However, there is insufficient evidence to make conclusions regarding the use of BMP-7 to aid fusion in the lumbar spine. There is moderate evidence that the use of rhBMP-2 in cervical spine fusion increases cervical swelling and related complications. The strength of the evidence on clinical outcomes is moderate for on-label use of rhBMP-2 to enhance bony fusion in acute open shaft tibial fractures if the device is applied within 14 days of the initial fracture. BMP-7 may be used as an alternative to autograft in recalcitrant long-bone non-unions where use of an autograft is not feasible and alternative treatments have failed. The strength of the evidence is moderate that rhBMP-2 does not provide an advantage in prosthesis implantation and functional loading compared to autograft plus allograft bone for sinus augmentation.

PEEK (Polyetheretherketone)

Evidence for the use of rhBMP with devices made from polyetheretherketone is limited.

Kersten et al (2015) stated that polyetheretherketone (PEEK) cages have been widely used during the past decade in patients with degenerative disorders of the cervical spine. Still, limitations are seen such as pseudoarthrosis, subsidence, and migration of the cages. The authors stated that limited evidence on the clinical outcome of PEEK cages is found in the literature other than noncomparative cohort studies with only a few randomized controlled trials. The authors conducted a systematic evidence review to assess the clinical and radiographic outcome of PEEK cages in the treatment of degenerative disc disorders and/or spondylolisthesis in the cervical spine. The systematic review included all randomized controlled trials and prospective and retrospective nonrandomized comparative studies with a minimum follow-up of 6 months and all noncomparative cohort studies with a long-term follow-up of more than 5 years. The primary outcome variable was clinical performance. Secondary outcome variables consisted of radiographic scores. A total of 223 studies were identified, of which 10 studies were included. These comprised two randomized controlled trials, five prospective comparative trials, and three retrospective comparative trials. The authors found minimal evidence for better clinical and radiographic outcome for PEEK cages compared with bone grafts in the cervical spine. No differences were found between PEEK, titanium, and carbon fiber cages. The authors stated that future studies are needed to improve methodology to minimize bias. Publication of lumbar interbody fusion studies needs to be promoted because differences in clinical and/or radiographic scores are more likely to be demonstrated in this part of the spine.

A clinical trial by Viadya et al. (2008) evaluated the use of polyetheretherketone (PEEK) cages and recombinant human bone morphogenetic protein (rhBMP)-2 in 59 patients (82 fusion levels) requiring interbody spinal fusion in the cervical (n=23) or lumbar spine (n=36). Patients were followed for an average of 26 months. Plain radiographs were done to assess fusion and 10 of lumbar spine fusion patients were also evaluated with computed tomography scans. Postoperative x-rays confirmed fusion at 6-9 months for cervical patients and 9-12 months for lumbar. End plate resorption was seen on x-ray in all cervical spine fusions and the majority of lumbar fusions. However, 8 of the 24 patients who underwent transforaminal lumbar interbody fusions (TLIF) and 1 of the 2 patients with posterior lumbar interbody fusions (PLIF) showed evidence of migration on x-ray requiring revision surgery in all cases except 1 because of neurologic symptoms. One patient in the cervical group had minimal cage migration with no symptoms. The authors concluded that the use of rhBMP-2 with PEEK cages have good fusion rates; however, the early role of rhBMP in the resorptive phase may cause loosening and cage migration.

Ceramic-Based Products

Lerner et al. (2009) conducted a prospective randomized study to compare beta-tricalcium phosphate (b-TCP) with autogenous iliac crest bone graft (ICBG) in 40 consecutive patients with adolescent idiopathic scoliosis. Patients were equally divided and followed for a minimum of 20 months with a mean follow-up of 4 years. Both groups were comparable with respect of the preoperative major curve (b-TCP group: average Cobb angle 59.1 degrees; ICBG group: 60.8 degrees). Standing x-rays were obtained before surgery, after postoperative mobilization, and at all follow-up visits. In 9 patients of the b-TCP group and 8 patients of the ICBG group, thoracoplasty was performed. Average postoperative curve correction was 61.7% (22.9 degrees) in the b-TCP group and 61.2% (23.8 degrees) in the ICBG group and 57.2 (25.5 degrees) and 54.3% (28 degrees), respectively, at follow-up. At last follow-up, all patients in the ICBG group and all but 1 patient in the b-TCP group were considered fused as assessed by conventional x-rays. The authors concluded that these early promising results show that fusion rates are comparable between b-TCP and ICBG in correcting scoliosis. The fact that not all patients had the same procedure, with 17 patients having thoracoplasty with harvested rib bone, is a limitation to the study.

Bansal et al. (2009) prospectively evaluated 30 patients who underwent posterior stabilization and fusion with hydroxyapatite and beta-tricalcium phosphate (b-TCP) mixed with bone marrow aspirate. The mixture was used as a
bone graft substitute over one side of spine and autologous bone graft obtained from iliac crest over other side of spine. Patients were followed for a minimum of 12 months. CT scans at 3, 6, and 12 months showed fusion in all patients on the b-TCP side. Fusion on the autologous bone graft side was successful in 29 patients. The authors concluded that hydroxyapatite and beta-tricalcium phosphate mixed with bone marrow aspirate seems to be a promising alternative to conventional autologous iliac bone graft for posterolateral spinal fusion. The study is limited by small sample size.

Epstein (2008) assessed fusion rates and outcomes in 60 geriatric patients undergoing multilevel lumbar laminectomies and 1- to 2-level noninstrumented fusions using B-TCP/autograft. Odom's criteria and Short-Form 36 (SF-36) outcomes were studied 2 years postoperatively. Pseudarthrosis was documented in nine (15%) patients. Two years postoperatively, Odom's criteria revealed 28 excellent, 23 good, 5 fair, and 4 poor results, whereas SF-36 data revealed improvement on 6 of 8 Health Scales in all patients.

Cell-Based Products
The use of cell based bone graft substitutes has been and continues to be investigated for various procedures, including spinal fusion and for intervertebral disc regeneration. The lack of adequate controls, randomization and blinding and the small sample sizes precludes definitive conclusions regarding the net health benefit of MSC therapy.

The American Academy of Orthopaedic Surgeons (2007) provides information on stem cells: At this point, stem cell procedures in orthopaedics are still at an experimental stage. Most procedures are performed at research centers as part of controlled clinical trials. This is the most current position statement of the AAOS.

Several preclinical studies have been conducted to evaluate the effectiveness of MSCs in tissue regeneration. Caudwell and colleagues (2014) conducted a systematic review of preclinical studies using MSC and scaffolds in the treatment of knee ligament regeneration. The authors concluded, based on their investigation of 21 articles, that preclinical evidence of ligamentous regeneration with MSC and scaffold use was established, but limited clinical evidence exists to support recently developed scaffolds.

Ammerman et al. (2012) conducted a retrospective chart review to identify all patients who had undergone a minimally invasive instrumented transforaminal lumbar interbody fusion (MITLIF) for degenerative lumbar conditions. 23 patients at 26 spinal levels underwent a MITLIF. Twenty-one patients went on to achieve radiographic evidence of solid bony arthrodesis by 12 months post-op. The authors concluded that Osteocel plus results in robust and reproducible lumbar interbody fusion. The study is limited by retrospective study design. Additional studies, preferably long-term randomized controlled trials, are needed to further validate these results.

Kerr et al. (2011) conducted a retrospective review to analyze the clinical effectiveness of mesenchymal stem cells allograft (Osteocel*) to achieve radiological arthrodesis in adult patients undergoing lumbar interbody fusion surgery for different indications. Fifty-two consecutive patients received lumbar interbody fusion at one (69%) or two contiguous (31%) levels of lumbar spine for various indications. Procedures performed were circumferential fusion (67%), ALIF (17%) and TLIF (16%). Follow-up radiographic data was analyzed to establish arthrodesis versus failure (pseudarthrosis), number of months until achievement of fusion, and possible factors affecting the fusion rate. Follow-up ranged from 8 to 27 (median, 14) months. Solid arthrodesis was achieved in 92.3% of patients at median follow up time of 5 months (95% CI; range, 3 to 11 months). Kaplan-Meier survival curves and Mantle-Cox test were conducted to assess the effect of various factors on the rate of fusion. Statistics showed that increasing age (older than 50 years) and habitual smoking delayed the fusion time and increased the risk of pseudarthrosis. The use of Osteocel allograft is safe and effective in adult patients undergoing lumbar interbody spinal fusion procedure. Increased age and habitual smoking delays fusion but gender, previous surgery at the index level, type of procedure and number of levels do not affect the fusion rates. The study is limited by retrospective study design. Additional studies, preferably long-term randomized controlled trials, are needed to further validate these results.

Platelet Rich Plasma (PRP)

Bone Healing and Fusion Enhancement

Platelet rich plasma (plasma having a platelet concentration above baseline) is an approach being investigated for the treatment of bone healing. PRP is also referred to as autologous platelet derived growth factor, platelet enriched plasma, platelet-rich concentrate, and autogenous platelet gel or platelet releasate. When activated in the body, platelets release growth factors which accelerate healing, including platelet-derived growth factor, transforming growth factor beta (TGF-β) and insulin-like growth factor to name a few.

Piemontese et al. (2008) conducted a randomized, double-masked, clinical trial to compare platelet-rich plasma (PRP) combined with a demineralized freeze-dried bone allograft (DFDBA) to DFDBA mixed with a saline solution in the treatment of human intrabony defects in 60 patients. Thirty patients each were randomly assigned to the test group (PRP + DFDBA) or the control group (DFDBA + saline). The investigators concluded that treatment with a combination of PRP and DFDBA led to a significantly greater clinical improvement in intrabony periodontal defects compared to
DFDBA with saline. No statistically significant differences were observed in the hard tissue response between the two treatment groups, which confirmed that PRP had no effect on hard tissue fill or gain in new hard tissue formation.

Schaaf et al. (2008) conducted a randomized controlled study to evaluate that effectiveness of platelet-rich plasma (PRP). Fifty-three patients who underwent osteoplastic bone grafting for sinus floor elevation were included. The intervention group was treated with defined concentrations of PRP in addition to transplanted bone. Bone biopsies did not indicate superiority of any of the treatments in terms of bone volume. The investigators concluded that topical use of PRP did not improve maxillary bone volume either clinically relevant or statistically significant compared to that in conventionally treated patients. The use of PRP to support bone regeneration cannot be recommended as a standard method for maxillary augmentation.

Evidence in the published scientific literature is inconsistent and does not support the clinical utility of using PRP to augment bone grafting.

Soft Tissue (Tendon, Joint and other Soft Tissue Areas of the Body)

An updated Hayes report (2015) for platelet-rich plasma for ligament and tendon injuries concluded that the research provided mixed and inconclusive evidence regarding the ability of injection of platelet-rich plasma (PRP) to improve outcomes or accelerate healing in patients who have tendon or ligament injuries.

The clinical and tissue effects of the coapplication of platelet rich plasma (PRP) injection with arthroscopic acromioplasty (AA) in patients with chronic rotator cuff tendinopathy was investigated by Carr et al. (2015) in a RCT of 60 individuals. The authors reported there was no significant difference in the Oxford Shoulder Score between AA alone and AA + PRP at any time point in the study. The authors noted that PRP significantly alters the tissue characteristics in tendons after surgery with reduced cellularity and vascularity and increased levels of apoptosis and the coapplication of PRP may have potential deleterious effects on healing tendons.

Balasubramaniam et al. (2015) systematically reviewed the literature regarding PRP therapy in chronic tendinopathy. A total of 389 articles were reviewed from Feb 2010 to April 2014, for possible inclusion. Of these articles, a total of 9 randomized controlled trials (RCTs) met the inclusion criteria. Each article was reviewed independently by 2 authors. Each article was analyzed using the Cochrane Criteria checklist. Where any discrepancy occurred in results, a 3rd independent reviewer was consulted. The review found that PRP was most effective in patellar and lateral epicondylar tendinopathy, with both RCTs in the patellar section of the study supporting the use of PRP in pain reduction at 3 and 12 months, whereas 2 of 4 studies in the lateral epicondylar section showed improvements in pain and disability at 6 and 12 months. There was a lack of evidence to support the use of PRP in Achilles and rotator cuff tendinopathy. The authors concluded that although the results of this review showed promise for the use of PRP in chronic tendinopathy, the analysis highlighted the need for more controlled clinical trials comparing PRP with placebo.

Mishra et al. (2014) conducted a randomized controlled trial of 230 patients with chronic lateral epicondylar tendinopathy who were treated at 12 centers over 5 years. All patients had at least 3 months of symptoms and had failed conventional therapy. No significant differences were noted between groups at 12 weeks (n=192, 83.5%). At 24 weeks (n=119, 51.8%), the PRP-treated subjects reported an improvement of 71.5% in their pain scores compared with 56.1% in the control group. Additionally, 29.1% of the PRP-treated group reported significant elbow tenderness versus 54.0% in the control group. Success rates for the subjects completing the 24 week follow-up period were 83.9% in the PRP group vs. 68.3% in the control group. No significant complications occurred in either group. The authors concluded that at 24 weeks clinically meaningful improvements were found in subjects treated with leukocyte-enriched PRP compared with an active control group. However, these results must be viewed with care, since the loss to follow-up was so large at 24 weeks (48.2%).

A systematic review published in 2014 by de Vos and Weir evaluated the available literature on PRP treatment for epicondylar tendinopathy. The authors included six studies that met inclusion criteria, of which four were considered to be of high-quality. Of these studies, three high-quality and two low-quality studies showed no significant benefit at the final follow-up measurement or in predefined primary outcome score when compared with a control group. Only one high-quality study showed a beneficial effect of a PRP injection when compared with a corticosteroid injection (corticosteroid injections are harmful in tendinopathy). The conclusion of this analysis was that there is strong evidence that PRP injections are not efficacious in chronic LE.

A review by Jiang and Wang (2013) assessed the use of PRP for the treatment of tendinopathy. They discuss the positive rationales for using PRP, but note “the efficacy of PRP treatment in enhancing the recovery of tendinopathic tendons has not been conclusively or consistently demonstrated in clinical trials.” The authors call for more studies to investigate and better define the precise effects of PRP treatment.

In a RCT, Peerbooms and associates (2010) examined the effectiveness of PRP compared with corticosteroid injections in patients with chronic lateral epicondylitis. A total of 100 patients with chronic lateral epicondylitis were randomly...
assigned in the PRP group (n = 51) or the corticosteroid group (n = 49). A central computer system carried out randomization and allocation to the trial group. Patients were randomized to receive either a corticosteroid injection or an autologous platelet concentrate injection through a peppering technique. The primary analysis included VAS and DASH Outcome Measure scores (DASH: Disabilities of the Arm, Shoulder, and Hand). Successful treatment was defined as more than a 25 % reduction in VAS or DASH score without a re-intervention after 1 year. The results showed that, according to the VAS, 24 of the 49 patients (49 %) in the corticosteroid group and 37 of the 51 patients (73 %) in the PRP group were successful, which was significantly different. Furthermore, according to the DASH scores, 25 of the 49 patients (51 %) in the corticosteroid group and 37 of the 51 patients (73 %) in the PRP group were successful, which was also significantly different. The corticosteroid group was better initially and then declined, whereas the PRP group progressively improved. The authors concluded that treatment of patients with chronic lateral epicondylitis with PRP reduces pain and significantly increases function, exceeding the effect of corticosteroid injection. They stated that future decisions for application of the PRP for lateral epicondylitis should be confirmed by further follow-up from this trial and should take into account possible costs and harms as well as benefits.

A systematic review by Rabago et al. (2009) reviewed existing evidence for prolotherapy, polidocanol, autologous whole blood, and platelet-rich plasma (PRP) injection therapies for lateral epicondylitis (LE) and found 5 prospective case series and 4 controlled trials (3 prolotherapy, 2 polidocanol, 3 autologous whole blood and 1 PRP) which suggested each of the 4 therapies is effective for LE. The authors concluded that there is strong pilot-level evidence supporting the use of prolotherapy, polidocanol, autologous whole blood, and PRP injections in the treatment of LE. However, rigorous studies of sufficient sample size, assessing these injection therapies using validated clinical, radiological and biomechanical measures, and tissue injury/healing-responsive biomarkers, are needed to determine long-term safety and effectiveness, and whether these techniques can play a definitive role in the management of LE and other tendonopathies.

De Vos et al. (2010) conducted a randomized controlled trial of 54 patients with chronic Achilles tendinopathy. Patients were equally divided to receive either an injection of platelet rich plasma or saline. All patients completed a questionnaire consisting of standardized outcome measures for pain and activity levels at 6, 12, and 24 weeks. Upon completion of the study, there were no significant differences in the pain or activity levels between the two groups.

In summary, there is lack of well-designed studies to support use of PRP in clinical settings in the management of tendon injuries. Overall the authors found a limited amount of basic science research on the influence of PRP on the inflammation and repair of connective tissue. There is a large amount of variability. The lack of standardization makes it difficult to establish an appropriate treatment standard.

Professional Societies/Guidance Recommendations

Guidance from the National Institute for Health and Clinical Excellence (NICE) on PRP for tendinopathy (Jan 2013) reported, “The evidence on autologous blood injection for tendinopathy raises no major safety concerns. The evidence on efficacy remains inadequate, with few studies available that use appropriate comparators. Therefore, this procedure should only be used with special arrangements for clinical governance, consent and audit or research.”

OptiMesh®

OptiMesh is a conformable, porous, polymeric containment device that is inserted into the evacuated disc space and filled with a mixture of cortico-cancellous allograft with demineralized bone matrix, autograft, and bone marrow aspirate to aid traumatic fracture repair and interbody fusion. Evidence is limited to a single case study that utilized OptiMesh for a compression fracture. Much of the evidence in the peer-reviewed published scientific literature evaluating these materials consists of nonhuman trials, case reports and case series. Well-designed trials involving human subjects are necessary to support safety and efficacy when used for bone repair. Long-term safety and effectiveness have not been established.

Zheng et al. (2010) evaluated the biomechanics of lumbar motion segments instrumented with stand-alone OptiMesh system augmented with posterior fixation using facet or pedicle screws and the efficacy of discectomy and disc distraction. The filled mesh bag serves as the interbody device providing structural support to the motion segment being fused. Twenty-four fresh human cadaveric lumbar motion segments were divided into two groups. In the control group, multidirectional flexibility testing was conducted after an intact condition and standard transforaminal lumbar interbody fusion (TLIF) procedure. In the OptiMesh group, testing was performed following intact, stand-alone OptiMesh procedure, OptiMesh with facet screws (placed using the transfacet approach), and OptiMesh with pedicle screws and rods. Range of motion (ROM) was calculated for each surgical treatment. The lordosis and disc height change of intact and instrumented specimens were measured in the lateral radiographs to evaluate the disc space distraction. The OptiMesh system offers large volume of bone graft in the disc space with small access portals. The OptiMesh system had similar construct stability to that of standard TLIF procedure when posterior fixation was applied. However, the amount of distraction was limited without additional distraction tools. With the anterior support provided by the expandable meshed bag, facet screws had comparable construct stability to that of pedicle screws.
Inamasu et al (2008) reported a patient with a flexion-distraction injury of the L1 vertebra treated with a combination of short-segment posterior fixation and OptiMesh (Spineology Inc., St. Paul, MN), a flexible balloon-shaped mesh that is deployed into the fractured vertebra together with allograft. The role of minimally invasive procedures for reconstruction of the vertebral column height, including the OptiMesh system, in patients with thoracolumbar compression fracture seems promising. However, the long-term effectiveness of these new techniques is unknown. It also remains to be seen how the delivery of allograft into the fractured vertebra via OptiMesh affects remodeling, and whether the restored vertebral height is maintained.

Amniotic Tissue Membrane
A search of the peer-reviewed medical literature databases of amniotic tissues in orthopedic applications show a need for future research. There is limited evidence that amniotic tissue membrane improves health outcomes when used in lumbar spine fusion. Long term safety and efficacy have not been established. The function, structure, and characteristics of human amnion have been widely studied; however, there are very little research data to support the benefits of these tissues for orthopedic problems. (Hayes, 2017)

No professional guidelines offered recommendations regarding the use of amniotic-derived tissues for the treatment of orthopedic conditions.

Professional Societies
American Association of Neurological Surgeons, Congress of Neurological Surgeons
The American Association of Neurological Surgeons, Congress of Neurological Surgeons (2014) recommendations:
- The use of demineralized bone matrix (DBM) as a bone graft extender is an option for 1- and 2-level instrumented posterolateral fusions.
- The use of β-tricalcium phosphate (β-TCP)/local autograft as a substitute for autologous iliac crest bone (AICB) is an option for single-level instrumented posterolateral fusion due to comparable fusion rates and clinical outcomes.
- The use of calcium sulfate preparations mixed with local autograft, as a substitute for autologous iliac crest bone, (AICB), is an option for instrumented posterolateral fusions.

U.S. FOOD AND DRUG ADMINISTRATION (FDA)
Allografts are considered tissues for transplantation. FDA: “Minimally manipulated human bone for transplantation: Human cells or tissue intended for implantation, transplantation, infusion, or transfer into a human recipient is regulated as a human cell, tissue, and cellular and tissue-based product or HCT/P.” If combined with other materials, the resulting product is considered a device and regulated by the FDA as a medical device.

Products used for bone growth and bone grafts products are extensive. See the following website for more information and search by product name in device name section:

REFERENCES
The foregoing Oxford policy has been adapted from an existing UnitedHealthcare national policy that was researched, developed and approved by UnitedHealthcare Medical Technology Assessment Committee. [2018T04107]

ECRI Institute. Custom Product Brief. Infuse Bone Graft (Medtronic plc.) for Anterior Lumbar Interbody Fusion. October 2017

POLICY HISTORY/REVISION INFORMATION

<table>
<thead>
<tr>
<th>Date</th>
<th>Action/Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>04/01/2018</td>
<td>Updated coverage rationale; replaced language indicating:</td>
</tr>
<tr>
<td></td>
<td>- “[The listed services] are proven and medically necessary” with “[the listed services] are proven and/or medically necessary”</td>
</tr>
<tr>
<td></td>
<td>- “[The listed services] are unproven and not medically necessary” with “[the listed services] are unproven and/or not medically necessary”</td>
</tr>
<tr>
<td></td>
<td>Updated supporting information to reflect the most current clinical evidence and references</td>
</tr>
<tr>
<td></td>
<td>Archived previous policy version SURGERY 056.17 T2</td>
</tr>
</tbody>
</table>