BREAST IMAGING FOR SCREENING AND DIAGNOSING CANCER

Policy Number: DIAGNOSTIC 105.14 T2

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INSTRUCTIONS FOR USE</td>
<td>1</td>
</tr>
<tr>
<td>CONDITIONS OF COVERAGE</td>
<td>1</td>
</tr>
<tr>
<td>BENEFIT CONSIDERATIONS</td>
<td>2</td>
</tr>
<tr>
<td>COVERAGE RATIONALE</td>
<td>3</td>
</tr>
<tr>
<td>APPLICABLE CODES</td>
<td>4</td>
</tr>
<tr>
<td>DESCRIPTION OF SERVICES</td>
<td>5</td>
</tr>
<tr>
<td>CLINICAL EVIDENCE</td>
<td>6</td>
</tr>
<tr>
<td>U.S. FOOD AND DRUG ADMINISTRATION</td>
<td>12</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>13</td>
</tr>
<tr>
<td>POLICY HISTORY/REVISION INFORMATION</td>
<td>16</td>
</tr>
</tbody>
</table>

Related Policies
- Omnibus Codes
- Preventive Care Services
- Radiology Procedures Requiring Precertification for eviCore healthcare Arrangement

INSTRUCTIONS FOR USE

This Clinical Policy provides assistance in interpreting Oxford benefit plans. Unless otherwise stated, Oxford policies do not apply to Medicare Advantage members. Oxford reserves the right, in its sole discretion, to modify its policies as necessary. This Clinical Policy is provided for informational purposes. It does not constitute medical advice. The term Oxford includes Oxford Health Plans, LLC and all of its subsidiaries as appropriate for these policies.

When deciding coverage, the member specific benefit plan document must be referenced. The terms of the member specific benefit plan document [e.g., Certificate of Coverage (COC), Schedule of Benefits (SOB), and/or Summary Plan Description (SPD)] may differ greatly from the standard benefit plan upon which this Clinical Policy is based. In the event of a conflict, the member specific benefit plan document supersedes this Clinical Policy. All reviewers must first identify member eligibility, any federal or state regulatory requirements, and the member specific benefit plan coverage prior to use of this Clinical Policy. Other Policies may apply.

UnitedHealthcare may also use tools developed by third parties, such as the MCG™ Care Guidelines, to assist us in administering health benefits. The MCG™ Care Guidelines are intended to be used in connection with the independent professional medical judgment of a qualified health care provider and do not constitute the practice of medicine or medical advice.

CONDITIONS OF COVERAGE

<table>
<thead>
<tr>
<th>Applicable Lines of Business/ Products</th>
<th>This policy applies to Oxford Commercial plan membership.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benefit Type</td>
<td>General benefits package</td>
</tr>
<tr>
<td>Referral Required (Does not apply to non-gatekeeper products)</td>
<td>Yes</td>
</tr>
<tr>
<td>Authorization Required (Precertification always required for inpatient admission)</td>
<td>Yes<sup>1, 2, 3</sup></td>
</tr>
<tr>
<td>Precertification with Medical Director Review Required</td>
<td>Yes<sup>1</sup></td>
</tr>
<tr>
<td>Applicable Site(s) of Service (If site of service is not listed, Medical Director review is required)</td>
<td>Office, Outpatient</td>
</tr>
</tbody>
</table>

¹ Not required for patients with a prior history of breast cancer.
² Not required for patients with a family history of breast cancer.
³ Not required for patients with a prior history of breast cancer and a family history of breast cancer.
1 Oxford has engaged eviCore healthcare to perform initial reviews of requests for precertification and medical necessity reviews for CPT/HCPCS codes 0159T, 76377, 76499, 77058, 77059 and S8080 (Oxford continues to be responsible for decisions to limit or deny coverage and for appeals).
2 Precertification is not required through eviCore healthcare or Oxford for CPT/HCPCS codes 76641, 76642, 77065, 77066 or 77067.
3 Precertification is required for services covered under the Member’s General Benefits package when performed in the office of a participating provider. For Commercial plans, precertification is not required, but is encouraged for out-of-network services performed in the office that are covered under the Member’s General Benefits package. If precertification is not obtained, Oxford may review for medical necessity after the service is rendered.

Notes:
• All precertification requests for CPT/HCPCS codes 0159T, 76377, 76499, 77058, 77059, and S8080 are handled by eviCore healthcare. To pre-certify one of these radiology procedures, please call eviCore healthcare at 1-877-PRE-AUTH (1-877-773-2884) or log onto the eviCore healthcare web page using the Prior Authorization and Notification App. Please refer to Radiology Procedures Requiring Precertification for eviCore healthcare Arrangement for additional requirements, if applicable.
• Oxford is responsible for all precertification and medical necessity reviews for CPT/HCPCS codes 0346T, 0422T, and 76498.

BENEFIT CONSIDERATIONS

Before using this policy, please check the member specific benefit plan document and any federal or state mandates, if applicable.

Oxford Commercial Members who have Out-Of-Network Benefits
Oxford commercial Members who have out-of-network benefits and who are part of New York Large and Small groups, Connecticut Large and Small groups and New Jersey Large groups, also need to obtain precertification for MRI, MRA, PET, CT and Nuclear Medicine studies when seeing an out-of-network provider.

New Jersey (NJ) Small, NJ School Board and NJ Municipality Products
For Members enrolled on NJ Small, NJ School Board and NJ Municipality products, services indicated as requiring a precertification require medical necessity review. This review may be requested prior to service. If a medical necessity review is not requested by the provider prior to service, the medical necessity review will be conducted after the service is rendered with no penalty imposed for failure to request the review prior to rendering the service. It is the referring physician’s responsibility to provide medical documentation to demonstrate clinical necessity for the study that is being requested (for review prior to service) or has been rendered (for review after service was provided).

For additional information on baseline mammogram services, refer to the policy titled Preventive Care Services.

Essential Health Benefits for Individual and Small Group
For plan years beginning on or after January 1, 2014, the Affordable Care Act of 2010 (ACA) requires fully insured non-grandfathered individual and small group plans (inside and outside of Exchanges) to provide coverage for ten categories of Essential Health Benefits (“EHBs”). Large group plans (both self-funded and fully insured), and small group ASO plans, are not subject to the requirement to offer coverage for EHBs. However, if such plans choose to provide coverage for benefits which are deemed EHBs, the ACA requires all dollar limits on those benefits to be removed on all Grandfathered and Non-Grandfathered plans. The determination of which benefits constitute EHBs is made on a state by state basis. As such, when using this policy, it is important to refer to the member specific benefit plan document to determine benefit coverage.

The federal Patient Protection and Affordable Care Act (PPACA) follows the Grade B recommendation of the US Preventive Services Task Force, and requires preventive benefit coverage for screening mammography for women over age 40.

Refer to the policy titled Preventive Care Services for screening mammography.
Important Note: Oxford has engaged eviCore healthcare to perform initial reviews of requests for precertification and medical necessity reviews for CPT/HCPCS codes 0159T, 76377, 76499, 77058, 77059, and S8080. (Oxford continues to be responsible for decisions to limit or deny coverage and for appeals.)

To pre-certify a radiology procedure, please call eviCore healthcare at 1-877-PRE-AUTH (1-877-773-2884) or log onto the eviCore healthcare web page using the Prior Authorization and Notification App.

eviCore has established an infrastructure to support the review, development, and implementation of comprehensive outpatient imaging criteria. The radiology evidence-based guidelines and management criteria are available on the eviCore healthcare website using the Prior Authorization and Notification App.

Please refer to the policy titled Radiology Procedures Requiring Precertification for eviCore healthcare Arrangement for applicable CPT/HCPCS codes and additional requirements, if applicable.

Breast Imaging as an Adjunct to Mammography
Digital mammography is proven and medically necessary for patients with dense breast tissue.

Breast Magnetic Resonance Imaging (MRI)
Breast magnetic resonance imaging (MRI) is proven and medically necessary for patients at high risk for breast cancer as defined as having any of the following:
- Personal history of atypical breast histologies
- Family history or genetic predisposition for breast cancer
- Prior therapeutic thoracic radiation therapy
- Dense breast tissue with any one of the following risk factors:
 - Lifetime risk of breast cancer of ≥20%, according to risk assessment tools based on family history
 - Personal history of BRCA1 or BRCA 2 gene mutations
 - First-degree relative with a BRCA 1 or BRCA 2 gene mutation but not having had genetic testing themselves
 - Prior therapeutic thoracic radiation therapy between ages of 10-30
 - Personal history of Li Fraumeni Syndrome, Cowden syndrome or Bannayan-Riley-Ruvalcaba syndrome or a first-degree relative with one of these syndromes

Breast magnetic resonance imaging (MRI) is unproven and not medically necessary for patients with dense breast tissue not accompanied by defined risk factors as described above.

Magnetic Resonance Elastography of the Breast
Magnetic resonance elastography (MRE) is unproven and not medically necessary for breast cancer screening or diagnosis.

Scintimammography is unproven and not medically necessary for breast cancer screening or diagnosis.

Breast Specific Gamma Imaging (Scintimammography)
Scintimammography is unproven and not medically necessary for breast cancer screening or diagnosis.

Electrical Impedance Scanning (EIS)
Electrical impedance scanning (EIS) is unproven and not medically necessary for the detection of breast cancer.

Computer Aided Detection for MRI of the Breast
Computer-aided detection (CAD) is unproven and not medically necessary as an aid for radiologists to interpret contrast-enhanced magnetic resonance imaging (MRI) of the breast.
Clinical evidence has not yet demonstrated that CAD improves patient outcomes or reduces breast cancer mortality when added to contrast-enhanced MRI. There is insufficient evidence to assess whether the use of CAD systems would maintain or increase the sensitivity, specificity, and recall rates of MRI of the breast. Prospective, well-designed and executed studies are needed to determine whether or not the use of CAD provides a positive clinical benefit.

Breast Ultrasound

Breast ultrasound is unproven and not medically necessary for routine breast cancer screening including patients with dense breast tissue.
Clinical evidence has not yet demonstrated that routine use of ultrasonography as an adjunct to screening mammography reduces the mortality rate from breast cancer.

Breast ultrasound is proven and medically necessary as an aid for radiologists to localize breast lesions and in guiding placement of instruments for cyst aspiration and percutaneous breast biopsies.

Computer-Aided Detection for Ultrasound

Computer-aided detection (CAD) is unproven and not medically necessary as an aid for radiologists to detect breast cancer during ultrasound.
Clinical evidence has not yet demonstrated that CAD improves patient outcomes or reduces breast cancer mortality when added to ultrasonography. Future research should include better-designed studies, including prospective studies and randomized controlled trials evaluating this technology in large numbers of screening ultrasounds.

Computer-Aided Tactile Breast Imaging

Computer-aided tactile breast imaging is unproven and not medically necessary.
Clinical evidence is insufficient to determine whether tactile breast imaging improves outcomes for the screening or diagnosis of breast cancer. Future research should include better-designed studies, including comparative, prospective and randomized controlled trials evaluating this technology.

Automated Breast Ultrasound

Automated breast ultrasound is unproven and not medically necessary.
Clinical evidence is insufficient to determine whether automated breast ultrasound improves the detection rate of breast cancer compared to screening mammography. Future research should include better-designed studies, including prospective studies and randomized controlled trials evaluating this technology.

Refer to the eviCore healthcare Evidence Based Imaging Guidelines - Oxford for:
- Magnetic resonance imaging (MRI) of the breast
- 3D rendering of computed tomography, magnetic resonance imaging or other tomographic modalities

APPLICABLE CODES

The following list(s) of procedure and/or diagnosis codes is provided for reference purposes only and may not be all inclusive. Listing of a code in this policy does not imply that the service described by the code is a covered or non-covered health service. Benefit coverage for health services is determined by the member specific benefit plan document and applicable laws that may require coverage for a specific service. The inclusion of a code does not imply any right to reimbursement or guarantee claim payment. Other Policies may apply.

<table>
<thead>
<tr>
<th>CPT Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0159T</td>
<td>Computer aided detection, including computer algorithm analysis of MRI image data for lesion detection/characterization, pharmacokinetic analysis, with further physician review for interpretation, breast MRI (List separately in addition to code for primary procedure)</td>
</tr>
<tr>
<td>0346T</td>
<td>Ultrasound, elastography (List separately in addition to code for primary procedure)</td>
</tr>
<tr>
<td>0422T</td>
<td>Tactile breast imaging by computer-aided tactile sensors, unilateral or bilateral</td>
</tr>
</tbody>
</table>
Mammography is a specific type of imaging that uses a low-dose x-ray system for examination of the breasts. This is considered the best available method for early detection of breast cancer, particularly in the case of small or nonpalpable lesions. An abnormal screening mammogram requires a diagnostic test to confirm whether cancer is present. Lesions that are suggestive of cancer are evaluated with tissue biopsy. If a noninvasive diagnostic test is available that can accurately exclude cancer; many women with an abnormal mammogram could avoid biopsy. Therefore, efforts to develop adjuvant imaging procedures continue. This policy will focus on magnetic resonance elastography, scintimammography, electrical impedance scanning and computer-aided detection for MRI, automated breast ultrasound and ultrasound for breast cancer screening and the diagnosis of breast cancer.

The National Cancer Institute estimates that about 40 percent of women undergoing screening mammography have dense breasts. These women have an increased risk of breast cancer, with detection usually at a more advanced and difficult to treat stage.

Mammography is a low-dose X-ray imaging method of the breast. However, mammograms of dense breasts can be difficult to interpret. Fibroglandular breast tissue and tumors both appear as solid white areas on mammograms. As a result, dense breast tissue may obscure smaller tumors, potentially delaying detection of breast cancer.

Magnetic Resonance Elastography (MRE) of the Breast

MRE of the breast is a phase-contrast-based MRI technique that is based upon quantitative differences in the mechanical properties of normal and malignant tissues. Specifically, the elastic modulus of breast cancer tissue is approximately 5- to 20-fold higher than that of the surrounding fibroglandular tissue, i.e., breast cancers are usually harder than normal tissues. This difference can be measured by applying a known stressor and measuring the resulting deformation. MRE is performed by a radiologist in an MRI suite equipped with the electromechanical driver and integrated radiofrequency coil unit.

Breast Specific Gamma Imaging (BSGI)

BSGI, also known as scintimammography (SMM) or molecular breast imaging (MBI) is a noninvasive diagnostic technology that detects tissues within the breast that accumulate higher levels of a radioactive tracer that emit gamma radiation. The test is performed with a gamma camera after intravenous administration of radioactive tracers. Scintimammography has been proposed primarily as an adjunct to mammography and physical examination to improve selection for biopsy in patients who have palpable masses or suspicious mammograms.

Electrical Impedance Scanning (EIS)

EIS was developed as a confirmatory test to be used in conjunction with mammography. The device detects abnormal breast tissue using small electrical currents. Since malignant tissue tends to conduct more electricity than normal tissue, the electrical current produced creates a conductivity map of the breast which automatically identifies sites that appear suspicious. The transmission of electricity into the body is via an electrical patch on the arm or a handheld device which travels to the breast. This is measured by a probe on the surface of the skin.
Computer-Aided Detection with MRI of the Breast
In contrast to CAD systems used with mammography, CAD analysis with MRI creates a 2- or 3-dimensional (2-D, 3-D) color-coded image that is overlaid on the MRI image to mark potentially malignant areas of the breast which allows the radiologist to compare the enhanced image to the original MRI.

Breast Ultrasound
Ultrasound, also known as sonography, is an imaging method using sound waves rather than ionizing radiation to a part of the body. For this test, a small, microphone-like instrument called a transducer is placed on the skin (which is often first lubricated with ultrasound gel). It emits sound waves and picks up the echoes as they bounce off body tissues. The echoes are converted by a computer into a black and white image on a computer screen. Ultrasound is useful for evaluating some breast masses and is the only way to tell if a suspicious area is a cyst (fluid-filled sac) without placing a needle into it to aspirate (draw out) fluid. Cysts cannot accurately be diagnosed by physical exam alone. Breast ultrasound may also be used to help doctors guide a biopsy needle into some breast lesions.

Computer-Aided Detection (CAD) for Ultrasound
CAD systems for ultrasound use pattern recognition methods to help radiologists analyze images and automate the reporting process. These systems have been developed to promote standardized breast ultrasound reporting.

Computer-Aided Tactile Breast Imaging
Tactile breast imaging includes placing a tactile array sensor in contact with the breast. As the clinician gently moves the hand-held sensor across the breast and underarm area, data signals are then processed into multidimensional color images that instantly appear on a computer screen in real-time, allowing the clinician to view the size, shape, hardness and location of suspicious masses immediately.

Automated Breast Ultrasound
Automated Breast Ultrasound is the first and only ultrasound system developed and US Food and Drug Administration (FDA) approved specifically for breast cancer screening in women with dense breast tissue who have not had previous breast biopsies or surgeries. It is used as an adjunct to mammography. The high center-frequency significantly sharpens detail resolution while the ultra-broadband performance simultaneously delivers distinct contrast differentiation.

Digital Mammography

Professional Societies
American College of Obstetricians and Gynecologists (ACOG, 2015)
The American College of Obstetricians and Gynecologists recommends routine screening with use of digital mammography for women diagnosed with dense breasts. They do not recommend routine use of alternative or adjunctive tests to screening mammography in women with dense breasts who are asymptomatic and have no additional risk factors.

Automated Breast Ultrasound System (ABUS)
A 2013 Hayes report evaluating automated breast ultrasound system (ABUS), found that the results presented in the majority of the study abstracts report overall favorable results when using three-dimensional automated breast ultrasound. Further review is required to confirm abstract content and, therefore, conclusions about the safety and effectiveness of this technology cannot be made until a full assessment has been completed.

Hellgren et al. (2017) conducted a study to compare the sensitivity and specificity of Automated Breast Volume Scanners (ABVS) to handheld breast US for detection of breast cancer in the situation of recall after mammography screening. A total of 113 women, five with bilateral suspicious findings, undergoing handheld breast US due to a suspicious mammographic finding in screening, underwent additional ABVS. The methods were assessed for each breast and each detected lesion separately and classified into two categories: breasts with mammographic suspicion of malignancy and breasts with a negative mammogram. Results Twenty-six cancers were found in 25 women. In the category of breasts with a suspicious mammographic finding, the sensitivity of both handheld US and ABVS was 88% (22/25). The specificity of handheld US was 93.5% (87/93) and ABVS was 89.2% (83/93). In the category of breasts with a negative mammography, the sensitivity of handheld US and ABVS was 100% (1/1). The specificity of handheld US was 100% (102/102) and ABVS was 94.1% (96/102). The authors concluded that ABVS can potentially replace handheld US in the investigation of women recalled from mammography screening due to a suspicious finding. Due to the small size of this study population, further investigation with larger study populations is necessary before the implementation of such practice.
Kim et al. (2016) conducted a prospective study to compare the diagnostic performance of handheld ultrasound (US) and an automated breast volume scanner (ABVS) as second-look US techniques subsequent to preoperative breast magnetic resonance imaging (MRI). From March to September 2014, both types of second-look US examinations were performed on 40 patients with breast cancer who had 76 additional suspicious lesions detected via preoperative breast MRI. Each second-look US modality was reviewed independently and the detection rate of each, the correlation between the detection rate, and the MRI factors (size, distance, and enhancement type) were evaluated. The detection rate of the ABVS was higher than that of handheld US for the second-look examination (94.7% versus 86.8%). Among the 76 total lesions, 7 were only identified by the ABVS, 1 was only found by handheld US, and 3 were not detected by either the ABVS or handheld US. When we analyzed the correlation between the detection rate and MRI factors, the only meaningful factor was the enhancement type. The ability to detect a non-mass lesion was lower than the ability to detect a mass-type lesion for both the ABVS and handheld US. It was concluded that for a second-look US examination subsequent to preoperative breast MRI in patients with breast cancer, the ABVS is a more efficient modality than handheld US for preoperative evaluations. However, both techniques have limitations in detecting non-mass lesions. This study is limited to a small sample size.

Prosch et al. (2011) conducted a prospective diagnostic study. The study examined 148 breasts of 76 patients with handheld ultrasound (US) and ABUS. The ABUS data were evaluated separately by two investigators. The inter-observer agreement for the breast imaging reporting and data system (BI-RADS) classification among the two observers using ABUS was high, the agreement with handheld US was moderate. The sensitivity in the detection of breast cancer was 87.5% for handheld US and 75% for the ABUS evaluation by observer 1. The sensitivity was 87.5% for the ABUS evaluation and 83% for mammography by observer 2. The authors concluded that ABUS examinations focusing on the BI-RADS classification have low inter-observer variability, compared to handheld US.

An extensive literature search was conducted. All of the studies found were small sample sizes, case, comparative, and retrospective in nature. The results presented in the majority of the study abstracts report overall favorable results when using three-dimensional automated breast ultrasound. The main limitation in the studies that have been conducted is that they included a higher proportion of malignant lesions or breast masses than would be found in the screening population. Larger scale research will be needed to be conducted to determine its role in breast cancer screening.

Magnetic Resonance Elastography of the Breast

Although there are ongoing studies and clinical trials, there continues to be a lack of strong high quality evidence in the peer-reviewed medical literature to support the safety and efficacy of MRE. When used in conjunction with conventional ultrasound, breast elastography appears to be promising in assisting to differentiate potentially benign from malignant lesions, however, large prospective clinical trials addressing appropriate patient selection, diagnostic parameters, and practical application of this technique are necessary prior to widespread clinical use.

A prospective study by Siegmann et al. (2010) evaluated the value of adding magnetic resonance elastography (MRE) to contrast-enhanced MR imaging (MRI) for evaluating breast lesions in 57 patients. The sensitivity of MRI was 97.3% whereas specificity was 55%. If contrast-enhanced MRI was combined with α0 (indicator of tissue stiffness), the diagnostic accuracy could be significantly increased. The authors concluded that combining MRE with MRI increase the diagnostic performance of breast MRI; however, larger studies are needed to validate the results and to identify the patients best suited for a combined procedure.

Breast Specific Gamma Imaging (BSGI) (also known as Scintimammography)

Limited evidence on the diagnostic accuracy of BSGI reports that the test has a relatively high sensitivity and specificity for detecting malignancy. However, the evidence does not establish that BSGI improves outcomes when used as an adjunct to mammography for breast cancer screening. In the available studies, the negative predictive value of BSGI has not been high enough to preclude biopsy in patients with inconclusive mammograms. In addition, the evidence is not sufficient to conclude that BSGI is better than MRI for this purpose. Larger, higher-quality studies are required to determine whether BSGI has a useful role as an adjunct to mammography.

Guo et al. (2016). In a 2016 systematic review and meta-analysis, the authors sought to establish if Tc-99m sestamibi scintimammography is useful in the prediction of neoadjuvant chemotherapy responses in breast cancer. Electronic database were searched for relevant publications in English, and fourteen studies, for a total of 503 individuals, fulfilled the inclusion criteria. The results indicated that Tc-99m MIBI scintimammography had acceptable sensitivity in the prediction of neoadjuvant chemotherapy response in breast cancer; however, its relatively low specificity showed that a combination of other imaging modalities would still be needed. Subgroup analysis indicated that performing early mid-treatment Tc-99m MIBI scintimammography (using the reduction rate of one or two cycles or within the first half-courses of chemotherapy compared with the baseline) was better than carrying out later (after three or more courses) or post-treatment scintimammography in the prediction of neoadjuvant chemotherapy response.
Brem et al. (2016). The authors conducted this retrospective review to determine the incremental increase in breast cancer detection when BSGI is used as an adjunct to mammography in women at increased risk for breast cancer. 849 patients undergoing BSGI from April 2010 through January 2014 were retrospectively reviewed. Eligible patients were identified as women at increased risk for breast cancer and whose most recent mammogram was benign. Examinations exhibiting focal increases in radiotracer uptake were considered positive. Incremental increase in cancer detection was calculated as the percentage of mammographically occult BSGI-detected breast cancer and the number of mammographically occult breast cancers detected per 1,000 women screened. Reviewed for this study were patients in whom 14 BSGI examinations detected mammographically occult breast cancer. Patients ranged in age from 26 to 83 with a mean age of 57. Eleven of 14 cancers were detected in women with dense breasts. The addition of BSGI to the annual breast screen of asymptomatic women at increased risk for breast cancer yields 16.5 cancers per 1,000 women screened. When high-risk lesions and cancers were combined, BSGI detected 33.0 high-risk lesions and cancers per 1,000 women screened. The authors concluded that BSGI is a reliable adjunct modality to screening mammography that increases breast cancer detection by 1.7% (14/849) in women at increased risk for breast cancer, comparable to results reported for breast MRI. BSGI is beneficial in breast cancer detection in women at increased risk, particularly in those with dense breasts. Limitation of this study is retrospective study design.

In the 2013 ECRI Evidence Report Noninvasive Diagnostic Tests for Breast Abnormalities found that only women with a pre-scintimammography suspicion of malignancy of 5 percent or less will have their post-scintimammography suspicion of malignancy change sufficiently to suggest that a change in patient management may be appropriate.

An archived 2014 Hayes report evaluating breast-specific gamma imaging (BSGI) found that the available evidence does not provide conclusive evidence that breast-specific gamma imaging can be relied on rather than biopsy, US, or MRI in women who have suspicious breast lesions on mammograms. In several of the reviewed studies, BSGI detected some cancerous lesions that were not detected by mammography; however, these studies did not report whether the increased detection corresponded to a statistically significant increase in the sensitivity of BSGI compared with mammography. In the studies that provided data on patient management, BSGI was not rigorously compared with MRI or US to determine whether it was more effective. Only two studies reported the statistical significance of results, both of which indicated that BSGI was more specific than MRI. Although further studies may indicate that breast-specific gamma imaging has greater sensitivity than ultrasonography and MRI, breast-specific gamma imaging has the disadvantage that it exposes the patient to radiation. In addition, unlike biopsy, breast-specific gamma imaging does not provide a definitive diagnosis since it incorrectly indicates that 15% to 40% of benign lesions are cancerous. The quality of the evidence is low due to the predominately retrospective study design, small sample sizes, and, in some cases, lack of statistical analysis of results. Additional studies are needed to determine the place in therapy of BSGI versus the alternatives.

Weigert et al. reported data from a retrospective multicenter patient registry. This study analyzed 1042 patients drawn from 2004 patients in the registry. Women included in the study had BSGI imaging, pathologic diagnosis by biopsy, and at least six months follow-up. BSGI had been recommended for patients with at least two of the following indications: equivocal or negative mammogram/ultrasound and an unresolved clinical concern; personal history of breast cancer or current cancer diagnosis; palpable masses negative on mammogram or ultrasound; radiodense breast tissue; or high risk for breast cancer. In this population, BSGI had a reported sensitivity of 91%, specificity of 77%, positive predictive value of 57%, and NPV of 96%. In 139 patients who had a suspicious lesion on mammography, BSGI imaging was negative in 21 cases, 13 of which were true negatives and eight of which were false negatives. The mix of indications in this study makes it difficult to generalize the results or to determine whether the performance of BSGI varies by indication.

Kim (2012) evaluated the adjunctive benefits of BSGI versus MRI in breast cancer patients with dense breasts. This study included a total of 66 patients with dense breasts (breast density greater than 50 %) and already biopsy-confirmed breast cancer. All of the patients underwent BSGI and MRI as part of an adjunct modality before the initial therapy. Of 66 patients, the 97 undetermined breast lesions were newly detected and correlated with the biopsy results. Twenty-six of the 97 breast lesions proved to be malignant tumors; the remaining 71 lesions were diagnosed as benign tumors. The sensitivity and specificity of BSGI were 88.8 % and 90.1 % respectively, while the sensitivity and specificity of MRI were 92.3 % and 39.4 %), respectively. MRI detected 43 false-positive breast lesions, 37 (86.0 %) of which were correctly diagnosed as benign lesions using BSGI. In 12 malignant lesions less than 1 cm, the sensitivities of BSGI and MR imaging were 83.3 % and 91.7 % respectively. The author concluded that BSGI showed an equivocal sensitivity and a high specificity compared to MRI in the diagnosis of breast lesions. In addition, BSGI had a good sensitivity in discriminating breast cancers less than or equal to 1 cm. The results of this study suggested that BSGI could play a crucial role as an adjunctive imaging modality which can be used to evaluate breast cancer patients with dense breasts. The study was limited by small sample size, larger prospective studies are needed to determine the true sensitivity and specificity of BSGI.

Based on 44 studies of scintimammography, an analysis found that for non-palpable lesions, the specificity of scintimammography was 39.2% (at a fixed 95% sensitivity). At the mean threshold of the included studies, the
A meta-analysis of scintimammography included 5,473 patients from studies performed since 1997. The overall sensitivity was 85% and the specificity was 84% for single-site trial studies, and for multi-center trial studies the overall sensitivity was 85% and the specificity was 83%. (Hussain and Buscombe, 2006) Another meta-analysis evaluating scintimammography included 5,340 patients from studies published between January 1967 and December 1999. The aggregated summary estimates of sensitivity and specificity for scintimammography were 85.2% and 86.6% respectively. The authors concluded that scintimammography may be used effectively as an adjunct to mammography when additional information is required to reach a definitive diagnosis. The authors also indicated that the role of scintimammography should be assessed on the basis of large, multi-center studies. (Liberman et al., 2003)

A retrospective study by Brem et al. (2008) evaluated the sensitivity and specificity of breast-specific gamma imaging (BSGI) in 146 patients (167 lesions) for the detection of breast cancer. Breast biopsy identified 83 cancers [16 ductal carcinoma in situ (DCIS) and 67 invasive cancers]. BSGI helped detect cancer in 80 of 83 malignant lesions with a sensitivity of 96.4% and correctly identified 50 of 84 nonmalignant lesions as negative for cancer with a specificity of 59.5%. The positive predictive value for 80 of 114 malignant lesions with a BSGI examination with findings positive for cancer was 68.8% and the negative predictive value for 50 of 53 nonmalignant lesions was 94.3%. BSGI helped detect occult cancer not visualized at mammography or ultrasonography in 6 patients. The authors concluded that with a sensitivity of 96.4% and 59.5% specificity, BSGI is promising for detecting breast cancers; however the authors note that larger studies are needed to support the findings. The study is manufacturer sponsored.

Brem et al. (2009) conducted a multi-centered retrospective review of 26 women (28 carcinomas) to compare the sensitivity of mammography, sonography, MRI, and breast-specific gamma imaging (BSGI) in the detection of invasive lobular carcinoma. Mammograms were negative in 6 of 28 (21%), yielding a sensitivity of 79%. In the 25 patients who underwent sonography, 17 had focal hypoechoic areas, yielding a sensitivity of 68%. In the 12 patients who underwent MRI, the sensitivity was 83%. BSGI had a sensitivity of 93%. There was no statistically significant difference in the sensitivity of BSGI, MRI, sonography, or mammography; however there was a non-significant trend toward improved detection with BSGI. Based on the sensitivity ratings, the authors concluded that BSGI is an effective technique that should be used to evaluate patients with suspected cancer and has a promising role in the diagnosis of invasive lobular carcinoma. The study is limited by small sample size however invasive lobular carcinoma is a rarer form of breast cancer. Larger studies are needed to validate the results and evaluate the utility in diagnosing lobular cancer.

Professional Societies

Society of Nuclear Medicine and Molecular Imaging (SNMMI) (formerly Society of Nuclear Medicine)

SNM published guidelines in 2004 for breast scintigraphy that indicate that further study is needed to determine the population that is most likely to benefit from this procedure. The guideline also states that the usefulness of scintigraphy requires further study.

Regarding Breast Scintigraphy with Breast-Specific Gamma Cameras (BSGI), the SNMMI indicates that this imaging may be useful for the identification of:

- Additional lesions missed by mammography and physical exam
- Cancers that are difficult to detect using mammography
- Breast cancer in women with dense breast tissue
- Cancers that are difficult for mammography to detect
- Provide information that helps physicians and patients choose the most appropriate treatment plan

American Cancer Society (ACS)

According to ACS guidelines, routine breast cancer screening with scintimammography is not recommended.

Agency for Healthcare Research and Quality (AHRQ)

In a 2012 update to a 2006 review, the AHRQ concluded that the use of noninvasive imaging in addition to standard workup may be clinically useful for diagnostic purposes only for women with a low suspicion of malignancy. When choosing which noninvasive imaging technology to use for this purpose, diagnostic B mode grayscale ultrasound and MRI appear to be more accurate than PET, scintimammography, or the other types of ultrasound.

National Comprehensive Cancer Network® (NCCN®)

According to the National Comprehensive Cancer Network's Clinical Practice Guideline for Breast Cancer Screening and Diagnosis (NCCN, 2015), multiple studies show a combined use of digital mammography and tomosynthesis appears...
to improve cancer detection and decreased call back rates. Of note is most studies used double the dose of radiation, which can be minimized by the use of 2D reconstruction.

National Cancer Institute (NCI)

In a 2017 update, the NCI states that the use of tomosynthesis in both screening and diagnosis may decrease the need for ultrasound and other additional testing. At this time, there are no data on the association of tomosynthesis and overall mortality reduction.

American College of Radiology (ACR) and the Society for Pediatric Radiology (SPR)

According to the 2015 joint ACR-SPR Practice Parameter for the Performance of Tumor Scintigraphy (with gamma cameras): There is insufficient evidence to support the use of breast specific gamma imaging (BSGI) for breast cancer screening, and is not indicated for screening in their present form. However, scintimammography may be useful in selected patients (e.g., breast cancer screening in selected patients, evaluation of indeterminate breast abnormalities, initial staging, and recurrence detection.

Electrical Impedance Scanning (EIS)

Experimental studies have shown that significant changes occur in the electrical properties of breast cancer tissue compared to the surrounding normal tissue. This phenomenon motivated studies on cancer detection using electrical impedance techniques. However, the separation of malignant tumors from benign lesions based on impedance measurements needs further investigation. There is insufficient evidence in the published peer-reviewed scientific literature to support the diagnostic utility of electrical impedance scanning (EIS) of the breast. The incremental diagnostic value of these alternative breast imaging procedures as an adjunct to mammography has not yet been established, and the impact of the use of these systems on meaningful health outcomes remains unknown.

In a prospective, multi-center study, Wang et al. (2010) reported the sensitivity and specificity for the combination of EIS and ultrasound in identifying breast cancer and calculated the relative risk of breast cancer in young women. The young women (583 cases) scheduled for mammary biopsy underwent EIS and ultrasound, respectively. EIS and ultrasound results were compared with final histopathology results. Of the 583 cases, 143 were diagnosed with breast cancer. The relative probability of breast cancer for the young women was detected by EIS, ultrasound, and the combination method. The authors concluded that the combination of EIS and ultrasound is likely to become an applicable method for early detection of breast cancer in young women.

A prospective, multicenter clinical trial by Stojadinovic et al. (2005) evaluated EIS in 1,103 women. Twenty-nine cancers with a mean tumor size 1.7 cm were confirmed thru biopsy. Electrical impedance scanning had 17% sensitivity, 90% specificity, and a negative predictive value (NPV) of 98%. Statistically significant increases in specificity were observed for women who were premenopausal and women who were not using hormone replacement therapy. False-positive rates were increased in postmenopausal women and those taking exogenous hormones. While the authors concluded that EIS appears promising for early detection of breast cancer, the increased false positive rates in postmenopausal women and those taking exogenous hormones is concerning.

In contrast, Szabo et al. (2005) evaluated the diagnostic accuracy of targeted electrical impedance imaging in 137 women with 145 lesions. The specificity of electrical impedance imaging, using the TS2000 was significantly lower compared to mammography (49% compared to 97%) and ultrasound (100%). Sensitivity, after adding TS2000, was not impacted, but specificity was decreased to 46%. The authors concluded that targeted electrical impedance imaging as an adjunct to mammography and ultrasonography in the diagnosis of breast lesions is not justified.

A prospective case series by Fuchsjaeger et al. (2005) compared ultrasonography with EIS in 121 women with 128 BI-RADS category IV lesions. Upon biopsy, 37 lesions were found to be malignant with 16 being invasive ductal cancers and 11 being ductal carcinomas in situ. Of 91 benign lesions, the most common types were fibroadenomas (n=33) and fibrocystic changes (n=28). Mean lesion size was 1.6 ± 1.3 cm for the malignant lesions and 1.6 ± 0.7 cm for the benign lesions. For the malignant and the benign lesions, mean lesion depth was 0.9 ± 0.5 cm. EIS had 95% sensitivity, 75% specificity, and 97% negative predictive value (NPV) for detection of malignancies, whereas ultrasonography had 91% sensitivity, 34% specificity, and 92% NPV. EIS provided results in all patients, including those who had microcalifications. Although EIS performed better for smaller lesions and lesions that were closer to the skin, it was not reported whether these improvements were statistically significant.

This test is FDA-approved as a diagnostic aid in helping classify tumors found on mammogram. However, this technology has not had sufficient clinical testing to be used in breast cancer screening. The incremental diagnostic value of this technology as an adjunct to mammography has not yet been established. [American Cancer Society (ACS), 2012]
Professional Societies/Organizations

American Cancer Society (ACS)

In a 2016 update on experimental breast imaging, the ACS states that while this test is approved by the Food and Drug Administration (FDA) to help classify tumors found on mammograms, at this time there hasn’t been enough clinical testing to use it in breast cancer screening.

Society of Breast Imaging (SBI)

The SBI Position Statement entitled ‘Use of Alternative Imaging Approaches to Detection of Breast Cancer’ states that the following: “Often predicated on the increased vascularity associated with cancer, techniques to detect increased heat production, oxygen consumption, electrical impedance, light absorption, microwave transmission, and nitrous oxide production have indicated changes in the breast containing cancer that may assist in detection or diagnosis. While many of these approaches have received FDA approval for safety, such techniques remain either experimental or investigational, given the lack of standard techniques that can be uniformly applied and paucity of sufficient research to substantiate reliability of results. None of these tests have been shown to reduce mortality among tested women in randomized controlled trials.” Mammography provides the only examination satisfying both the benchmarks for screening and diagnosis based on objective and randomized clinical trials.

Computer-Aided Detection with MRI of the Breast

Computer-aided detection has been used to aid radiologists’ interpretation of contrast-enhanced MRI of the breast, which is sometimes used as an alternative to mammography or other screening and diagnostic tests because of its high sensitivity in detecting breast lesions, even among those in whom mammography is less accurate (e.g., younger women and those with denser breasts). The use of CAD may also reduce the time needed to interpret breast MRI images, which currently takes much longer than reading mammograms.

The published evidence on CAD MRI consists of 2 small clinical studies (Demartini et al., 2005; Lehman et al., 2006) performed with the CADStream and a few studies that reported on the development and validation of 3TP. (Hauth et al., 2006; Kelcz et al., 2002) and non-commercial CAD systems. (Deurloo et al., 2005; Pediconi et al., 2005; Meinel et al., 2007)

DeMartini et al. (2005) performed a study to determine the utility of CADStream applied to breast MRI in 15 newly diagnosed breast cancer patients (16 lesions) undergoing neoadjuvant chemotherapy. Prior to chemotherapy, all tumors demonstrated CAD-assessed significant enhancement. Following chemotherapy, 7/16 tumors showed no residual significant enhancement, but all had residual disease at pathology. The authors concluded that CAD may be helpful in assessing changes in MRI enhancement profiles of tumors following chemotherapy. However, CAD-assessed significant enhancement following chemotherapy can be falsely negative for residual malignancy, and CAD tumor sizes are less accurate than those measured by the radiologist in predicting size of residual malignancy. CAD may complement but should not replace the radiologist’s assessment of tumors in this patient population.

Lehman et al. (2006) compared the accuracy of breast MRI interpretations of 33 consecutive lesions seen only on MRI (9 malignant, 24 benign) with and without CADstream. For benign lesions, the false-positive rate was reduced by 25% to 50%, depending on the enhancement thresholds used for the analysis. The authors concluded that CADStream accurately showed significant enhancement in all the malignant lesions while depicting 12 of 24 benign lesions as showing insignificant enhancement. The authors further stated if these results are validated by a larger study, the number of unnecessary biopsies of MR lesions could be reduced without a concomitant decrease in cancer detection.

Currently, there are a few retrospectively designed studies which do not establish the accuracy or clinical utility of CAD systems. Additional well-designed prospective trials are needed to establish what if any impact CAD systems may have on long-term breast cancer survival rates.

The Blue Cross Blue Shield Association (BCBSA) Technology Evaluation Center (TEC) completed a technology assessment in 2006 for CAD with MRI and concluded that there is insufficient evidence to assess whether the use of CAD systems would maintain or increase the sensitivity, specificity, and recall rates of MRI of the breast. Given the inability to evaluate these intermediate outcomes, it is not possible to assess the impact of CAD on health outcomes such as treatment success among breast cancer patients or survival. (BCBSA, 2006c)

Computer-Aided Detection for Ultrasound

Two retrospective studies were identified that evaluated CAD for detection and diagnosis of breast cancer. Prospective studies are needed to confirm that CAD systems improve diagnostic performance for radiologists interpreting breast ultrasound images, and that any improvement in diagnostic performance results in a clinical benefit, such as appropriately selecting patients for biopsy or for clinical follow-up.
Cho et al. (2016) conducted a retrospective study to compare the detection of breast cancer using full-field digital mammography (FFDM), FFDM with computer-aided detection (FFDM+CAD), ultrasound (US), and FFDM+CAD plus US (FFDM+CAD+US), and to investigate the factors affecting cancer detection. This study was conducted from 2008 to 2012, and 48,251 women underwent FFDM and US for cancer screening. The clinical and pathological data was reviewed to investigate factors affecting cancer detection, and used generalized estimation equations to compare the cancer detectability of different imaging modalities. The results of this study showed the detectability of breast cancer by US or FFDM+CAD+US to be superior to that of FFDM or FFDM+CAD. However, cancer detectability was not significantly different between FFDM versus FFDM+CAD and US alone versus FFDM+CAD+US. The tumor size influenced cancer detectability by all imaging modalities. In FFDM and FFDM+CAD, the non-detecting group consisted of younger patients and patients with a denser breast composition. In breast US, carcinoma in situ was more frequent in the non-detecting group. The authors concluded that for breast cancer screening, breast US alone is satisfactory for all age groups, although FFDM+CAD+US is the perfect screening method. Patient age, breast composition, and pathological tumor size and type may influence cancer detection during screening. The study is also limited by small sample size, retrospective and non-blinded study design.

A retrospective study by Sahiner et al. (2007) evaluated ultrasound images with or without the use of CAD in 101 women. When a 2% likelihood of malignancy was used as the threshold for biopsy recommendation, the average sensitivity of radiologists increased from 96% to 98% with CAD, while the average data set decreased form 22% to 19%. The investigators concluded that use of a computer algorithm may improve accuracy in identifying malignant from benign breast masses. The results of several uncontrolled studies suggest that CAD systems for ultrasounds may be useful for evaluating breast masses. (Huang et al., 2005; Chang et al., 2005; Joo et al., 2004; Chen et al., 2003) However, published evidence has not yet demonstrated that CAD improves patient outcomes or reduces breast cancer mortality when added to ultrasonography.

Professional Societies
American College of Radiology (ACR)
The ACR Practice Guideline for the performance of screening and diagnostic mammography (2014) states “Double reading and computer-aided detection (CAD) may slightly increase the sensitivity of mammographic interpretation, and may be used. However, this sensitivity is at the expense of decreased specificity with increased recall and biopsy rates, at this time, they are not considered standards of care.”

Computer-Aided Tactile Breast Imaging
Comprehensive literature review of Hayes, ECRI, AHRQ, MCG, NICE, and Cochrane did not produce detailed comprehensive information regarding this technology. Controlled trials are needed to demonstrate that use of computer aided tactile breast imaging results in improved clinical outcomes.

Tasoulis et al. (2014) Unnecessary referrals of patients with breast lumps represent a significant issue, since only a few patients actually have lumps when examined by a breast specialist. Tactile imaging (TI) is a novel modality in breast diagnostics armamentarium. The aim of this study was to assess TI’s diagnostic performance and compare it to clinical breast examination (CBE). This is a prospective, blinded, comparative study of 276 consecutive patients. All patients underwent conventional imaging and tissue sampling if either a radiological or a palpable abnormality was present. Sensitivity, specificity and positive and negative predictive values for CBE and TI were calculated. Radiological findings and final diagnosis based on histology and/or cytology were used as reference standards. Receiver operator characteristic (ROC) curve analysis was also performed for each method. Sensitivity and specificity of TI in detecting radiologically proven abnormalities were 85.5 % and 35 %, respectively. CBE’s sensitivity was 80.3 % and specificity 76 %. In detecting a histopathological entity according to histology/cytology, sensitivity was 88.2 % for TI and 81.6 % for CBE. Specificity was 38.5 % and 85.7 % for TI and CBE, respectively. These results suggest a trend towards higher sensitivity of TI compared to CBE but significantly lower specificity. Subgroup analysis revealed superior sensitivity of TI in detecting a histological entity in pre-menopausal women. However, CBE’s overall performance was superior compared to TI’s according to ROC curve analysis. Although further research is necessary, the use of TI by the primary care physician as a selection tool for referring patients to a breast specialist should be considered especially in pre-menopausal women.

U.S. FOOD AND DRUG ADMINISTRATION (FDA)

Mammographic x-ray systems are classified as Class II devices. The FDA regulates the marketing of mammography devices and regulates the use of such devices via the Mammography Quality Standards Act (MQSA). The FDA has granted pre-market approval to several digital mammography systems (product code MUE) for breast cancer screening and diagnosis.
Magnetic Resonance Elastography of the Breast

Please see the following website for more information on devices used for elastography of the breast. Search by product name LNH in device name section: http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPMN/pmn.cfm (Accessed March 30, 2017)

Breast Specific Gamma Imaging (BSGI)

BSGI for diagnosing breast cancer is a procedure and, therefore, is not subject to FDA regulation. However, the equipment used to conduct BSGI is subject to FDA regulation. The cameras used during BSGI are considered Class I radiologic devices. A scintillation (gamma) camera is a device intended to image the distribution of radionuclides in the body by means of a photon radiation detector.

Automated Breast Ultrasound System (ABUS)

Automated breast (or whole breast) ultrasound devices are regulated by the FDA as Class III devices.

Electrical Impedance Scanning

These devices are approved as an adjunct to mammography in patients whose lesions are American College of Radiology (ACR) Breast Imaging-Reporting and Data System (BI-RADS) category III (probably benign) or IV (suspicious abnormality), based on mammography.

Computer Aided Detection for MRI of the Breast

Computer-Aided Detection for Ultrasound

Computer Aided Tactile Breast Imaging

On August 14, 2014 the Food and Drug Administration (FDA) issued a draft guidance document. The draft provides guidance on a streamlined process for submitting requests to the FDA to down-classify certain low-to-moderate-risk devices that have been automatically classified as Class III. The de novo process is an important premarket pathway option for companies that intend to market novel device technologies that the FDA has not previously reviewed or classified, such as novel health IT or laboratory diagnostic technologies.

The draft guidance clarifies that the FDA will consider requests for de novo classification only if the following criteria are met:

- There is no identifiable predicate device.
- The device is of low to moderate risk, and general controls or general and special controls would provide reasonable assurance of the device's safety and effectiveness.
- The known risks and benefits of the device can be explained, the known risks can be effectively mitigated, and the device’s effectiveness can be assured through application of general controls or general and special controls.

REFERENCES

The foregoing Oxford policy has been adapted from an existing UnitedHealthcare national policy that was researched, developed and approved by UnitedHealthcare Medical Technology Assessment Committee. [2017T0375S]

American College of Radiology (ACR) Practice Parameter for the Performance of Screening and Diagnostic Mammography. Reston, VA: American College of Radiology (ACR); 2014.
American College of Radiology (ACR), Society for Pediatric Radiology (SPR). ACR-SPR practice guideline for the performance of tumor scintigraphy (with gamma cameras). Reston, VA: American College of Radiology (ACR); 2015.
Blue Cross and Blue Shield Association Technology Evaluation Center (TEC). Breast-specific gamma imaging (BSGI), molecular breast imaging (MBI), or scintimammography with breast-specific gamma camera. TEC Assessments 2013; Volume 28.
Blue Cross Blue Shield Association (BCBSA) Technology Evaluation Center Digital Breast Tomosynthesis with Mammography for Breast Cancer Screening or Diagnosis. TEC Assessments 2014: Volume 28.

POLICY HISTORY/REVISION INFORMATION

<table>
<thead>
<tr>
<th>Date</th>
<th>Action/Description</th>
</tr>
</thead>
</table>
| 01/01/2018 | • Updated list of applicable HCPCS codes to reflect annual code edits; removed G0202, G0204, and G0206
 | | • Archived previous policy version DIAGNOSTIC 105.13 T2 |