MANIPULATION UNDER ANESTHESIA

Policy Number: ANESTHESIA 004.16 T2
Effective Date: May 1, 2018

INSTRUCTIONS FOR USE

This Clinical Policy provides assistance in interpreting Oxford benefit plans. Unless otherwise stated, Oxford policies do not apply to Medicare Advantage members. Oxford reserves the right, in its sole discretion, to modify its policies as necessary. This Clinical Policy is provided for informational purposes. It does not constitute medical advice. The term Oxford includes Oxford Health Plans, LLC and all of its subsidiaries as appropriate for these policies.

When deciding coverage, the member specific benefit plan document must be referenced. The terms of the member specific benefit plan document [e.g., Certificate of Coverage (COC), Schedule of Benefits (SOB), and/or Summary Plan Description (SPD)] may differ greatly from the standard benefit plan upon which this Clinical Policy is based. In the event of a conflict, the member specific benefit plan document supersedes this Clinical Policy. All reviewers must first identify member eligibility, any federal or state regulatory requirements, and the member specific benefit plan coverage prior to use of this Clinical Policy. Other Policies may apply.

UnitedHealthcare may also use tools developed by third parties, such as the MCG™ Care Guidelines, to assist us in administering health benefits. The MCG™ Care Guidelines are intended to be used in connection with the independent professional medical judgment of a qualified health care provider and do not constitute the practice of medicine or medical advice.

CONDITIONS OF COVERAGE

<table>
<thead>
<tr>
<th>Applicable Lines of Business/ Products</th>
<th>This policy applies to Oxford Commercial plan membership.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benefit Type</td>
<td>General benefits package 2</td>
</tr>
<tr>
<td>Referral Required</td>
<td>No</td>
</tr>
<tr>
<td>(Does not apply to non-gatekeeper products)</td>
<td></td>
</tr>
<tr>
<td>Authorization Required</td>
<td>Yes1</td>
</tr>
<tr>
<td>(Precertification always required for inpatient admission)</td>
<td></td>
</tr>
<tr>
<td>Precertification with Medical Director Review Required</td>
<td>No</td>
</tr>
<tr>
<td>Applicable Site(s) of Service</td>
<td>Office1, Outpatient</td>
</tr>
<tr>
<td>(If site of service is not listed, Medical Director review is required)</td>
<td></td>
</tr>
</tbody>
</table>

1Precertification is required for services covered under the Member's General Benefits package when performed in the office of a participating provider. For Commercial, precertification is not required, but encouraged for out of network services performed in the office that are covered under the Member's General Benefits package. If precertification is not obtained, Oxford may review for...
Special Considerations (continued)

medical necessity after the service is rendered.

2 This policy applies to specific CPT codes, regardless of the specialty of the treating provider, with the exception of chiropractic providers. If a chiropractor provides the services specified by a CPT code in this policy, those services will continue to accrue separately towards the chiropractic benefit.

BENEFIT CONSIDERATIONS

Before using this policy, please check the member specific benefit plan document and any federal or state mandates, if applicable.

Essential Health Benefits for Individual and Small Group

For plan years beginning on or after January 1, 2014, the Affordable Care Act of 2010 (ACA) requires fully insured non-grandfathered individual and small group plans (inside and outside of Exchanges) to provide coverage for ten categories of Essential Health Benefits ("EHBs"). Large group plans (both self-funded and fully insured), and small group ASO plans, are not subject to the requirement to offer coverage for EHBs. However, if such plans choose to provide coverage for benefits which are deemed EHBs, the ACA requires all dollar limits on those benefits to be removed on all Grandfathered and Non-Grandfathered plans. The determination of which benefits constitute EHBs is made on a state by state basis. As such, when using this policy, it is important to refer to the member specific benefit plan document to determine benefit coverage.

COVERAGE RATIONALE

Manipulation under anesthesia (MUA) is proven and/or medically necessary for:

- Elbow joint for arthrofibrosis following elbow surgery or fracture
- Knee joint for arthrofibrosis following total knee arthroplasty, knee surgery, or fracture
- Pelvis for acute traumatic fracture or dislocation
- Shoulder joint for adhesive capsulitis (e.g., frozen shoulder)

Manipulation under anesthesia is unproven and/or not medically necessary for:

- Ankle
- Finger*
- Hip joint or adhesive capsulitis of the hip
- Knee joint for any condition other than for arthrofibrosis following total knee arthroplasty, knee surgery, or fracture
- Pelvis for diastasis or subluxation
- Shoulder for any condition other than adhesive capsulitis (frozen shoulder)
- Spine
- Temporomandibular joint (TMJ)
- Toe
- Wrist

Published studies which are available are of relatively small sample size, short-term outcomes and lack of randomization or a control group.

*This policy does not apply to manipulation of the finger on the day following the injection of collagenase clostridium histolyticum (Xiaflex®) to treat Dupuytren's contracture.

Manipulation under anesthesia is unproven and/or not medically necessary for serial manipulations for any body part or multiple body joints for the management of acute or chronic pain conditions.

There is a lack of peer-reviewed published evidence supporting the need for multiple, repeat sessions of MUA for multiple body joints.

APPLICABLE CODES

The following list(s) of procedure and/or diagnosis codes is provided for reference purposes only and may not be all inclusive. Listing of a code in this policy does not imply that the service described by the code is a covered or non-covered health service. Benefit coverage for health services is determined by the member specific benefit plan document and applicable laws that may require coverage for a specific service. The inclusion of a code does not imply any right to reimbursement or guarantee claim payment. Other policies may apply.
### CPT Code	Description
21073 | Manipulation of temporomandibular joint(s) (TMJ), therapeutic, requiring an anesthesia service (i.e., general or monitored anesthesia care)
22505 | Manipulation of spine requiring anesthesia, any region
23700 | Manipulation under anesthesia, shoulder joint, including application of fixation apparatus (dislocation excluded)
24300 | Manipulation, elbow, under anesthesia
25259 | Manipulation, wrist, under anesthesia
26340 | Manipulation, finger joint, under anesthesia, each joint
27198 | Closed treatment of posterior pelvic ring fracture(s), dislocation(s), diastasis or subluxation of the ilium, sacroiliac joint, and/or sacrum, with or without anterior pelvic ring fracture(s) and/or dislocation(s) of the pubic symphysis and/or superior/inferior rami, unilateral or bilateral; with manipulation, requiring more than local anesthesia (i.e., general anesthesia, moderate sedation, spinal/epidural)
27275 | Manipulation, hip joint, requiring general anesthesia
27570 | Manipulation of knee joint under general anesthesia (includes application of traction or other fixation devices)
27860 | Manipulation of ankle under general anesthesia (includes application of traction or other fixation apparatus)

CPT® is a registered trademark of the American Medical Association

### HCPCS Code	Description
D7830 | Manipulation under anesthesia

ICD-10 Diagnosis Codes

MUA ICD-10 Dx Codes

DESCRIPTION OF SERVICES

Manipulation under anesthesia (MUA) is a non-invasive procedure which combines manual manipulation of a joint or the spine with a general anesthetic. In patients who are unable to tolerate manual procedures due to pain, spasm, muscle contractures, or guarding may benefit from the use of an anesthetic agent prior to manipulation. Anesthetics may include intravenous general anesthesia or mild sedation, injection of an anesthetic to the affected area, oral medication such as muscle relaxants, inhaled anesthetics, or any other type of anesthetic medication therapy. Because the patient's protective reflex mechanism is absent under anesthesia, manipulation using a combination of specific short lever manipulations, passive stretches, and specific articular and postural kinesthetic maneuvers in order to break up fibrous adhesions and scar tissue around the joint, spine and surrounding tissue is made less difficult. Manipulation procedures can be performed under either: general anesthesia, mild sedation, or local injection of an anesthetic agent to the affected area (Reid, 2002).

Manipulation under anesthesia (MUA) may be accompanied by fluoroscopically-guided intra-articular injections with corticosteroid agents to reduce inflammation or manipulation under joint anesthesia/analgesia (MUJA). Manipulation under epidural anesthesia (MUEA) employs an epidural, segmental anesthetic, often with simultaneous epidural steroid injections, followed by spinal manipulation therapy. Other therapies may combine manipulation with cortisone injections into paraspinal tissues or joint spaces.

Spinal manipulation under anesthesia (SMUA) consists of spinal manipulation and stretching procedures performed on the patient after an anesthetic is administered (e.g., mild sedation, general anesthesia) and may be recommended when standard chiropractic care and other conservative measures have been unsuccessful. This is typically performed by chiropractors, osteopathic physicians, and orthopedic physicians along with an anesthesiologist. Theoretically, SMUA is thought to stretch the joint capsules to break up adhesions within the spinal column to allow for greater mobility and reduced back pain; however this has not been proven in the peer-reviewed literature.

Note: Unless otherwise specified, this policy does not address closed reduction of a fracture or joint dislocation.
Manipulation under anesthesia (MUA) is intended to reduce pain and improve range of motion. It is a treatment modality that consists of manipulation and stretching procedures performed while the patient has received anesthesia (e.g., conscious sedation, general anesthesia). The rationale for this approach is that fibrotic changes in the peri-articular and intra-articular soft tissues hinder movement, and sometimes it is necessary to anesthetize patients to reduce muscle tone and protective reflex mechanisms so that the joints can be manipulated effectively. Those who advocate this procedure assert that it will break up adhesions within the surrounding joints and stretch the restricting fibrotic tissue to a length compatible with motion, thereby, increasing joint function and reducing pain.

Manipulation under anesthesia may be performed for a variety of musculoskeletal conditions which may include the ankle, elbow, hip, knee, shoulder, pelvis and pelvic ring fracture, dislocation, diastasis or subluxation, and the spine.

Ankle

No evidence was identified within the evidence-based peer-reviewed literature concerning ankle manipulation under anesthesia for the treatment of any condition.

Elbow

There is little data within the evidence-based, peer reviewed literature concerning the safety and effectiveness of using manipulation under anesthesia of the elbow. Although some studies suggest that it may be useful in the early-post operative recovery of patients with joint contractures, there is a lack of substantial evidence that validates this use.

Araghi and colleagues (2010) have used a technique of elbow examination (manipulation) under anesthesia in select patients. The study comprised 51 consecutive patients who underwent an examination under anesthesia. Forty-four patients with a minimum of 12 months follow-up revealed a mean pre-examination arc of 33 degrees, which improved to 73 degrees at the final assessment. Three patients had no appreciable change (less than 10 degrees) in the total arc, and 1 patient lost motion. Four patients underwent a second examination under anesthesia at a mean of 119 days after the first examination. The average pre-examination arc of 40 degrees increased to 78 degrees at the final assessment (mean improvement of 38 degrees). The only complication was worsening of ulnar paresthesias in 3 patients; with 2 resolving spontaneously, and 1 requiring anterior ulnar nerve transposition. The authors concluded that because this was not a controlled series, additional studies should be conducted to better identify those not likely to benefit from this procedure. In addition, this study is limited by its small sample size and lack of a control group.

A retrospective review by Tan et al. looked at 52 patients who underwent open surgical treatment for post-traumatic elbow contracture at an average of 14 months from the time of injury (Tan, 2006). Indication for operative release was functional loss of elbow arc of motion that failed non-operative therapy and a splinting program. Follow-up was 18.7 months. Of the 52 patients, 14 required closed manipulation under anesthesia, in the early postoperative period. Five patients required a second contracture release at an average of 12 months after the index release. Four patients failed because of painful motion and elbow instability. The authors concluded that recurrence of post-traumatic stiffness in the postoperative period is common but is responsive to manipulation under anesthesia and repeat releases. The relatively small number of patients and lack of randomization and a control group are weaknesses of this study.

Antuna et al. reported in a study for ulnohumeral arthroplasty for primary degenerative arthritis of the elbow that 2 patients underwent elbow manipulation under anesthesia to improve the range of motion after the ulnohumeral arthroplasty. The indication for this procedure was loss of preoperative motion or of motion attained at surgery. Both patients underwent manipulation twice, and ulnar nerve symptoms developed after the second manipulation. The arc of motion increased 40º in one patient and 45º in the other. However, because of the ulnar symptoms they no longer recommend manipulation of the elbow in the early postoperative period if the nerve has not been decompressed or translocated. They felt that patients with postoperative stiffness after ulnohumeral arthroplasty might be better treated by progressive stretching with static splints. (Antuna, 2002)

Finger

No studies that provide substantial evidence regarding the use of manipulation under anesthesia of the finger were identified.

Hip

No studies that provide substantial evidence regarding the use of manipulation under anesthesia of the hip joint were identified.
Knee

Arthrofibrosis is a condition that may occur following trauma, surgery or joint replacement. It is often seen after procedures such as ACL reconstruction surgery or knee replacement. Arthrofibrosis is due to inflammation and proliferation of scar tissue. In particular, traumatic injury to the knee leads to the formation of internal scar tissue which is followed by shrinking and tightening of the joints knee capsule. In some cases, tendons outside the joint shrink and tighten, all of which lead to decreased motion of the joint.

The use of knee joint manipulation following total knee arthroplasty appears to be effective as a means of improving flexion of the joint. It also appears that this procedure may lead to a decrease in pain scores as reported within the literature.

A matched case control study was conducted by Pierce et al. (2017) to assess the incidence of revision total knee arthroplasty (TKA) and outcomes of those undergoing manipulation under anesthesia (MUA) and compare it with a matched cohort who did not require MUA. A prospectively collected database of two high-volume institutions was assessed for patients who required a single MUA following TKA between 2005 and 2011. The study included 138 knees with a mean 8.5-year follow-up post-MUA. This was compared with a matched cohort (1:1) who underwent TKA during the same time period but did not require an MUA. Incidence of revision surgery and clinical outcomes were compared between the two cohorts. Nine knees underwent revision in the MUA cohort and seven revisions were performed in the matched cohort. The mean Knee Society Score (KSS) and clinical scores were similar between the two cohorts. The authors concluded that undergoing an MUA was not associated with an increased risk of revision TKA.

Dzaja et al. (2015) identified seventy-two patients who underwent MUA following TKA from their prospective database and compared with a matched cohort of patients who had undergone TKA without subsequent MUA. The purpose of this study was to compare clinical outcomes of total knee arthroplasty (TKA) after manipulation under anesthesia (MUA) for post-operative stiffness with a matched cohort of TKA patients who did not require MUA. Patients were evaluated for range of movement (ROM) and clinical outcome scores (Western Ontario and McMaster Universities Arthritis Index, Short-Form Health Survey, and Knee Society Clinical Rating System) at a mean follow-up of 36.4 months. In patients who required MUA, mean flexion deformity improved from 10° (0° to 25°) to 4.4° (0° to 15°), and mean range of flexion improved from 79.8° (65° to 95°) to 116° (80° to 130°). There were no statistically significant differences in ROM or functional outcome scores at three months, one year, or two years between those who required MUA and those who did not. There were no complications associated with manipulation.

Fitzsimmons et al. (2010) conducted a systematic review to compare manipulation under anesthesia (MUA) with arthroscopy and open arthrolysis for knee stiffness following total knee arthroplasty. The review evaluated 14,421 studies of which 23 were deemed relevant. MUA alone resulted in a mean gain in knee motion of 30 to 47 degrees. Range of motion in the arthroscopy group increased between 18.5 to 60 degrees. The open arthrolysis group had less gain in range of motion with gains between 19 and 31 degrees. The authors concluded that both MUA and arthroscopy provide similar gains in range of motion for patients with knee stiffness following total knee arthroplasty. Open arthrolysis had less favorable results.

Pariente et al. conducted a retrospective review on 333 patients who were unable to achieve adequate range of motion after total knee arthroplasty (Pariente, 2006). The study was conducted to compare the efficacy of a modified manipulation technique, which uses epidural anesthesia continued for postoperative analgesia, hospital stay of one to three days, continuous passive motion (CPM) for two to three days, and daily physical therapy (PT) to standard manipulation under anesthesia. Manipulation using a standard technique was performed on 273 patients (334 knees) and manipulation using a modified technique was performed on 60 patients (65 knees). Average follow-up time was 18.4 months. With the modified technique, ROM improved from 71 degrees to 102 degrees, and knee society pain, function, and total clinical scores improved as well. Successful results were observed in 48 (74%) knees with 4 additional knees having a successful result after a subsequent manipulation. The authors concluded that manipulation under epidural anesthesia represents a viable option for treatment of persistent stiffness after total knee arthroplasty.

Keating et al. (2007) studied 90 patients (113 knees) who underwent manipulation for postoperative flexion of ≤90 degrees at a mean of ten weeks after surgery. Flexion was measured with a goniometer prior to total knee arthroplasty, at the conclusion of the operative procedure, before manipulation, immediately after manipulation, at six months, and at one, three, and five years postoperatively. Of the 90 patients, 81 (90%) achieved improvement of ultimate knee flexion following manipulation. The average flexion was 102 degrees prior to total knee arthroplasty, 111 degrees following skin closure, and 70 degrees before manipulation. There was no significant difference in the mean improvement in flexion when patients who had manipulation within twelve weeks postoperatively were compared with those who had manipulation more than twelve weeks postoperatively. The authors concluded that manipulation generally increases ultimate flexion following total knee arthroplasty and patients with severe preoperative pain are more likely to require manipulation.
Namba and Inacio (2007) reviewed 195 patients who had undergone manipulation under anesthesia; 102 within 90 days of total knee arthroplasty and 93 more than 90 days after total knee arthroplasty. Average pain (10-point scale), satisfaction (10-point scale), flexion (degrees), and extension (degrees) were recorded before and after MUA. Flexion was significantly improved after MUA for both groups: early MUA from 68.4 degrees (±17.2 degrees) to 101.4 degrees (±16.15 degrees); and late MUA from 81.0 degrees (±13.3 degrees) to 98.0 degrees (±18.0 degrees). Pain decreased significantly with early MUA from 4.92 (±2.25) to 3.34 (±2.67) and with late MUA from 4.51 (±2.62) to 3.44 (±2.78). Extension improved only in the early MUA group from 7.15 (±10.1) to 2.50 (±4.98). Satisfaction scores were not improved. The authors concluded that both early and late manipulation can improve TKA pain and flexion.

Multiple Joints

Evidence supporting the need for multiple, repeat sessions of MUA for these conditions was not found in the published medical literature.

Pelvis

No literature was found to support manipulation under anesthesia of the pelvis for diastasis or subluxation.

Shoulder

Adhesive capsulitis, also referred to as frozen shoulder, describes a painful restriction (both passive and active) of shoulder motion in an individual whose x-rays are typically normal.

The use of shoulder manipulation under anesthesia to reduce pain and improve range of motion appears to be effective in patients with adhesive capsulitis (frozen shoulder) when conservative non-surgical treatment has failed.

Bidwai et al. (2016) conducted a prospective single surgeon patient reported outcome study to determine the results of limited anterior capsular release and controlled manipulation under anesthesia (MUA) in the treatment of primary frozen shoulder. Fifty-two patients were followed at regular intervals for a minimum of 6 months and a maximum of 12 months. Patients underwent pre and postoperative passive range of motion measurements (forward flexion, abduction, external rotation). Fifty-one patients (98%) achieved 160 degrees of forward flexion at a 6-month follow-up, with one patient only having 110 degrees. Fifty patients (96%) achieved 140 degrees of abduction at a 6-month follow-up, with one patient achieving 160 degrees and one patient limited to 90 degrees. No patients required surgical re-intervention. The authors concluded that there was a significant improvement in both pain and function modules of the Oxford Shoulder Score (OSS), and range of motion at 6 months. The median postoperative score was 41 from a maximum of 48 points, with an average mean improvement of 24 points. A combination of limited capsular release and MUA for the treatment of primary frozen shoulder is a safe and effective procedure resulting in marked improvement in pain, function and range of motion.

A prospective randomized controlled study was performed by Mun and Baek (2016) to compare the clinical efficacy of hydrodistention with joint manipulation under an interscalene block with that of intra-articular corticosteroid injection. The study included 121 patients presenting with frozen shoulder. Patients were randomized into 2 groups; those in group A (60 patients) were treated with hydrodistention with joint manipulation under an interscalene block, and those in group B (61 patients) were managed with intra-articular corticosteroid injection. The visual analog scale (VAS) was utilized to assess the pain intensity and patient satisfaction. Functional outcomes were assessed by the Constant score and the range of shoulder motion. The degree of pain and function were evaluated before treatment and at 2 weeks, 6 weeks, 12 weeks, 6 months, and 1 year. Group A demonstrated better patient satisfaction and earlier restoration of range of motion than group B at 6 weeks. At 12 weeks, the pain score was lower and the Constant score was better in group A. At 12 months after treatment, pain score, patient satisfaction, range of motion, and Constant score were similar in the 2 groups. The authors concluded that the study demonstrated earlier recovery with hydrodistention and manipulation compared with corticosteroid injection alone, and it was not associated with any complications.

A literature review by Grant and colleagues (2013) looked at whether there is a difference in the clinical effectiveness of arthroscopic capsular release compared to MUA for adhesive capsulitis. There were 9 MUA studies and 17 capsular release studies that were evaluated. The authors concluded that evidence quality is low (definitions, timing and outcomes inconsistent) so that the data available demonstrates no clear difference between a capsular release and an MUA.

A blinded, randomized trial with a 1 year follow-up, by Kivimaki et al. (2007) evaluated 125 patients with a frozen shoulder to determine the effect of manipulation under anesthesia. Patients were randomly assigned to either a manipulation group (65 patients) or a control group (60 patients). Both the intervention group and the control group were instructed in specific therapeutic exercises by physiotherapists. Clinical data was gathered at baseline and at 6 weeks and 3, 6, and 12 months after randomization. The 2 groups did not differ at any time of the follow-up in terms of shoulder pain or working ability. Small differences in the range of movement were detected in favor of the manipulation group. Perceived shoulder pain decreased during follow-up equally in the 2 groups, and at 1 year after
randomization, only slight pain remained. The authors concluded that manipulation under anesthesia does not add effectiveness to an exercise program carried out by the patient after instruction.

Ng et al. (2009) conducted a prospective trial of 50 patients to examine the efficacy of manipulation under anesthesia (MUA) followed by early physiotherapy in treating frozen shoulder syndrome. Disabilities of the Arm, Shoulder and Hand (DASH) score and visual analogue score (VAS) for pain and range of movement were measured preoperatively and at 6 weeks post-procedure. The mean DASH score decreased from 48.07 to 15.84 and the mean VAS reduced from 6.07 to 1.88. Flexion improved from 104.18 to 157.56; abduction from 70.48 to 150.00; and external rotation from 13.88 to 45.62. The authors concluded that MUA combined with early physiotherapy alleviates pain and facilitates recovery of function in patients with frozen shoulder syndrome.

In a prospective trial conducted between 2001 and 2003 by Loew et al. (2005), 30 patients with primary frozen shoulder manipulated under general anesthesia were evaluated for post manipulative intra-articular lesions. Patients with secondary stiffness caused by rotator cuff tears and glenohumeral arthritis were excluded. Arthroscopy was used after manipulation to document any intra-articular lesions. All patients noted an improvement in range of motion. Flexion improved on average from 70 degrees (± 33 degrees) to 180 degrees (± 15 degrees), abduction from 50 degrees (± 20 degrees) to 170 degrees (± 25 degrees), and external rotation from -5 degrees (± 10 degrees) to +40 degrees (± 20 degrees). Localized synovitis was detected in 22 of the patients in the area of the rotator interval, whereas disseminated synovitis was observed in 8 patients. After manipulation, the capsule was seen to be ruptured superiorly in 11 patients, the anterior capsule was ruptured up to the infraglenoid pole in 24 patients, and 16 patients each had a capsular lesion located posteriorly. In 18 patients no additional joint damage was found and in 4 patients, iatrogenic superior labrum anterior-posterior lesions were observed. The authors concluded that even though manipulation under anesthesia is effective in terms of joint mobilization, the method can cause iatrogenic intra-articular damage.

Flannery et al. (2007) evaluated 180 consecutive patients to determine what influence timing of manipulation under anesthesia (MUA) had on long-term outcomes for adhesive capsulitis of the shoulder. Of the 180 patients, 145 were available for follow-up after a mean period of 62 months (range of 12 to 125). All patients underwent MUA with intra-articular steroid injection. Improvement was noted in range of motion and function utilizing the Oxford Shoulder Score (OSS) and Visual Analogue Score (VAS) following manipulation. Eighty-three percent of the patients had MUA performed less than 9 months from onset of symptoms (early MUA). The remainder had MUA performed 9 to 40 months (late MUA) from onset of symptoms. The authors found that both groups had better mobility and Oxford Shoulder Score as well as less pain; however the early intervention group had the most improvement.

In a study by Farrell et al. (2005), manipulation under anesthesia was performed in 25 patients (26 shoulders) for whom non-operative treatment for idiopathic frozen shoulder had failed. All of the patients had physical therapy for a mean of 6.2 months. Long-term follow-up was obtained in 18 patients (19 shoulders) by questionnaire and averaged 15 years (range, 8.1 to 20.6 years). There were significant improvements in forward elevation from a mean of 104 degrees before manipulation to 168 degrees and in external rotation from 23 degrees to 67 degrees. There were 16 shoulders with no pain or slight pain and 3 with occasional moderate or severe pain. Of the 19 shoulders, 18 required no further surgery. The mean Simple Shoulder Test score was 9.5 out of 12 and the mean American Shoulder and Elbow Surgeons score was 80 out of 100. The authors conclude that treatment of idiopathic frozen shoulder by manipulation under anesthesia leads to sustained improvement in shoulder motion and function at a mean of 15 years after the procedure.

Spine

Recently published literature reviews have critically appraised the evidence concerning spinal manipulation under anesthesia (SMUA). A narrative review (Di Giorgio, 2013) of the literature investigating SMUA concluded, "...the evidence of treatment efficacy [SMUA] remains limited, with published studies that are generally weak in their methodological quality and consistently varied across multiple domains which do not permit comparative analysis toward generalization." Similarly, a review (Dagenais, et al, 2008) of medication-assisted manipulation for patients having chronic low back pain reported, "...there is insufficient research to guide clinicians, policy makers, and especially patients’ decision whether to consider this treatment [spinal medication-assisted manipulation] approach."

In a prospective study of 68 chronic low-back pain patients, Kohlbeck et al. (2005) compared changes in pain and disability for chronic low-back pain patients receiving treatment with medication-assisted manipulation (MAM) to patients receiving spinal manipulation only. All patients received an initial 4- to 6-week trial of spinal manipulation therapy (SMT), after which 42 patients received supplemental intervention with MAM and the remaining 26 patients continued with SMT. Low back pain and disability measures favored the MAM group over the SMT-only group at 3 months. The authors concluded that medication-assisted manipulation appears to offer some patients increased improvement in low back pain and disability; however the study is limited by lack of randomization, small sample size and significant baseline differences between groups for the primary outcome variable (pain/disability scale).
In a prospective controlled study by Palmieri and Smoyak (2002), 87 patients who received either SMUA or traditional chiropractic treatment for low back pain were evaluated. The participants were assigned to one of two groups: 38 to an intervention group who received SMUA and 49 patients to a nonintervention group who received traditional chiropractic treatment. Patients were followed for 4 weeks. Self-reported outcomes, including back pain severity and functional status, were used to evaluate changes. The SMUA group had an average decrease of 50% in the Numeric Pain Scale scores while the nonintervention group had a 26% decrease. The SMUA group had an average decrease of 51% in the Roland-Morris Questionnaire scores while the nonintervention group had a 38% decrease. The authors concluded that while there was greater improvement in the intervention group, additional studies are needed to evaluate the safety and effectiveness of MUA.

This study has a high risk of bias due to the methods used to select subjects, lack of assessor blinding, failure to isolate the effects of the active intervention, and interpretation of outcomes. Subjects were selected largely based upon 2 criteria: meeting NAMUAP eligibility requirements and having insurance coverage for SMUA. This led to significant baseline heterogeneities between intervention and control groups. Sample size (N=87; SMUA group = 38; SMT group = 49) did not reach anticipated number of participants. The attempt to measure the difference in treatment effect between SMUA and SMT was confounded by the addition of a specific exercise protocol for the SMUA group vs. an undefined “home exercise” program for the SMT group. Follow-up period was limited. Problems with obtaining timely follow-up data were reported. The use of a percentile difference in outcome scores between groups does not take into account if each outcome of interest exhibited a clinically meaningful difference between each group. In fact, there were no statistical or clinically meaningful differences between groups. There was a difference of 1.52 points on the NRS at initial follow-up and 1.32 points difference at final follow-up (the minimal clinically important change has been widely reported as 2 points). The difference at initial follow-up for the RMDQ was 2.2 points and at final follow-up was 1 point (as noted in the study, a 4 point difference is necessary for it to be clinically meaningful).

Cremata et al. (2005) reported the results of SMUA for 4 patients with chronic spinal, sacroiliac, and/or pelvic and low back pain. Patients with chronic pain who had not adequately responded to conservative medical and/or a reasonable trial (4 months minimum) of chiropractic adjustments, and had no contraindications to anesthesia or adjustments, were selected. The 4 patients went through 3 consecutive days of SMUA followed by an 8-week protocol of the same procedures plus physiotherapy in-office without anesthesia. Data included pre- and post-SMUA passive ranges of motion, changes in the visual analog scale, neurologic and orthopedic examination findings. The patients had follow-up varying from 9 to 18 months and showed improvement in passive ranges of motion, decreases in the visual analog scale rating, and diminishment of subsequent visit frequency. The authors concluded that manipulation under anesthesia was an effective approach to restoring articular and myofascial movements in patients who did not adequately respond to either medical in-office conservative chiropractic adjustments and/or adjunctive techniques. Weaknesses of this study include small sample size and lack of randomization. Additional studies are needed to evaluate the safety and effectiveness of SMUA.

Temporomandibular Joint (TMJ)

Available evidence for manipulation under anesthesia for temporomandibular joint syndrome is limited to small, uncontrolled studies with limited follow-up.

Foster et al. (2000) studied 55 patients receiving manipulation under general anesthesia of the temporomandibular joint to determine the success rate of MUA effectiveness in an effort to reduce the number of patients being referred for invasive surgery. Of the 55 patients participating in this study, 15 improved, 15 did not, 6 showed partial improvement and 19 were not treated. The median pre-treatment opening was 20mm (range 13-27). Among those who improved after manipulation, the median opening after treatment was 38mm (range 35-56). The authors concluded that MUA may help some patients; however, some of those who improved experienced a return of TMJ clicking but not of joint or muscle tenderness.

Toe

Feuerstein et al. (2016) performed a medical records review study (n=38) to investigate the intermediate and long-term outcomes of first metatarsophalangeal (MTP) joint manipulation for arthofibrosis that developed, specifically, as a complication of hallux valgus surgery. Medical records were reviewed at the Weil Foot and Ankle Institute, IL to identify those patients who had undergone first metatarsophalangeal (MTP) joint manipulation under anesthesia. Before the patient’s visit, the medical records were reviewed to assess the course and timing of the procedures, visual analog scale (VAS) score before manipulation and range of motion (ROM) of the first MTP joint after hallux valgus correction and before manipulation and first MTP joint ROM immediately after manipulation. Manipulation procedures occurred at a mean 1.2 years from the date of the initial hallux valgus correction. The research visits occurred at a mean 6.5 years after the first MTP joint manipulation. Before manipulation, the patients had a mean VAS score of 6.5. At the research visit, the mean VAS score was 2.3. The authors concluded that joint motion was significantly improved in the direction of dorsiflexion and plantar flexion from before manipulation to both immediately after manipulation and at the final follow-up visit. They stated that the study demonstrated that joint manipulation under anesthesia
could be a useful treatment modality to increase mobility and decrease pain in the patient. The limitations of the study include the lack of randomization, lack of a control or comparison group, and potential selection bias.

Wrist

Available evidence for manipulation under anesthesia for wrist is limited to small, uncontrolled studies with limited follow-up or case studies.

Professional Societies

The American College of Occupational and Environmental Medicine (ACOEM)

ACOEM has published recommendations concerning SMUA within two disability guidelines. The ACOEM has concluded that SMUA and medication-assisted spinal manipulations are not recommended due to insufficient evidence of safety and effectiveness for acute, subacute and chronic cervicothoracic and low back pain (ACOEM, 2012).

Two recently updated ODG guidelines (2014) for neck, upper back; lumbar and thoracic and disorders state that, “except in urgent situations as a closed orthopedic procedure in the treatment (reduction) of vertebral fracture or dislocation. In the absence of vertebral fracture or dislocation, MUA is not supported by quality evidence in the management of spine-based neuromusculoskeletal conditions (i.e., those involving chronic pain and/or fibrotic adhesions/scar tissue). Existing studies are poor quality and vary across numerous domains including technique application, potential use of co-interventions and dosage, so any favorable outcomes reported cannot be generalized.”

U.S. FOOD AND DRUG ADMINISTRATION (FDA)

Manipulation is a procedure and therefore not subject to FDA regulation.

REFERENCES

The foregoing Oxford policy has been adapted from an existing UnitedHealthcare national policy that was researched, developed and approved by UnitedHealthcare Medical Technology Assessment Committee. [2018T0515P]

American College of Occupational and Environmental Medicine (ACOEM). Cervical and thoracic spine disability guidelines. Reed Group, Medical Disability Advisor, MDGuidelines.

American College of Occupational and Environmental Medicine (ACOEM). Low back disorders disability guidelines. Reed Group, Medical Disability Advisor, MDGuidelines.

ODG. Methodology description using the AGREE instrument. Work Loss Data Institute 2014.

POLICY HISTORY/REVISION INFORMATION

<table>
<thead>
<tr>
<th>Date</th>
<th>Action/Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>05/01/2018</td>
<td>Updated coverage rationale; replaced language indicating:</td>
</tr>
<tr>
<td></td>
<td>- "[The listed service] is proven and medically necessary” with "[the listed service] is proven and/or medically necessary”</td>
</tr>
<tr>
<td></td>
<td>- "[The listed services] are unproven and not medically necessary” with "[the listed services] are unproven and/or not medically necessary”</td>
</tr>
<tr>
<td></td>
<td>Updated and reformatted list of applicable ICD-10 diagnosis codes:</td>
</tr>
<tr>
<td></td>
<td>- Transferred content to embedded Excel file format</td>
</tr>
<tr>
<td></td>
<td>Updated supporting information to reflect the most current clinical evidence and references</td>
</tr>
<tr>
<td></td>
<td>Archived previous policy version ANESTHESIA 004.15 T2</td>
</tr>
</tbody>
</table>